دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1.1 ed.]
نویسندگان: Jason Brownlee
سری: Machine Learning Mastery
ناشر: Independently Published
سال نشر: 2017
تعداد صفحات: 397
[414]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Deep Learning for Natural Language Processing: Develop Deep Learning Models for your Natural Language Problems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری عمیق برای پردازش زبان طبیعی: مدل های یادگیری عمیق را برای مشکلات زبان طبیعی خود ایجاد کنید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Copyright Contents Preface I Introductions Welcome Who Is This Book For? About Your Outcomes How to Read This Book About the Book Structure About Python Code Examples About Further Reading About Getting Help Summary II Foundations Natural Language Processing Natural Language Challenge of Natural Language From Linguistics to Natural Language Processing Natural Language Processing Further Reading Summary Deep Learning Deep Learning is Large Neural Networks Deep Learning is Hierarchical Feature Learning Deep Learning as Scalable Learning Across Domains Further Reading Summary Promise of Deep Learning for Natural Language Promise of Deep Learning Promise of Drop-in Replacement Models Promise of New NLP Models Promise of Feature Learning Promise of Continued Improvement Promise of End-to-End Models Further Reading Summary How to Develop Deep Learning Models With Keras Keras Model Life-Cycle Keras Functional Models Standard Network Models Further Reading Summary III Data Preparation How to Clean Text Manually and with NLTK Tutorial Overview Metamorphosis by Franz Kafka Text Cleaning Is Task Specific Manual Tokenization Tokenization and Cleaning with NLTK Additional Text Cleaning Considerations Further Reading Summary How to Prepare Text Data with scikit-learn The Bag-of-Words Model Word Counts with CountVectorizer Word Frequencies with TfidfVectorizer Hashing with HashingVectorizer Further Reading Summary How to Prepare Text Data With Keras Tutorial Overview Split Words with text_to_word_sequence Encoding with one_hot Hash Encoding with hashing_trick Tokenizer API Further Reading Summary IV Bag-of-Words The Bag-of-Words Model Tutorial Overview The Problem with Text What is a Bag-of-Words? Example of the Bag-of-Words Model Managing Vocabulary Scoring Words Limitations of Bag-of-Words Further Reading Summary How to Prepare Movie Review Data for Sentiment Analysis Tutorial Overview Movie Review Dataset Load Text Data Clean Text Data Develop Vocabulary Save Prepared Data Further Reading Summary Project: Develop a Neural Bag-of-Words Model for Sentiment Analysis Tutorial Overview Movie Review Dataset Data Preparation Bag-of-Words Representation Sentiment Analysis Models Comparing Word Scoring Methods Predicting Sentiment for New Reviews Extensions Further Reading Summary V Word Embeddings The Word Embedding Model Overview What Are Word Embeddings? Word Embedding Algorithms Using Word Embeddings Further Reading Summary How to Develop Word Embeddings with Gensim Tutorial Overview Word Embeddings Gensim Python Library Develop Word2Vec Embedding Visualize Word Embedding Load Google's Word2Vec Embedding Load Stanford's GloVe Embedding Further Reading Summary How to Learn and Load Word Embeddings in Keras Tutorial Overview Word Embedding Keras Embedding Layer Example of Learning an Embedding Example of Using Pre-Trained GloVe Embedding Tips for Cleaning Text for Word Embedding Further Reading Summary VI Text Classification Neural Models for Document Classification Overview Word Embeddings + CNN = Text Classification Use a Single Layer CNN Architecture Dial in CNN Hyperparameters Consider Character-Level CNNs Consider Deeper CNNs for Classification Further Reading Summary Project: Develop an Embedding + CNN Model for Sentiment Analysis Tutorial Overview Movie Review Dataset Data Preparation Train CNN With Embedding Layer Evaluate Model Extensions Further Reading Summary Project: Develop an n-gram CNN Model for Sentiment Analysis Tutorial Overview Movie Review Dataset Data Preparation Develop Multichannel Model Evaluate Model Extensions Further Reading Summary VII Language Modeling Neural Language Modeling Overview Problem of Modeling Language Statistical Language Modeling Neural Language Models Further Reading Summary How to Develop a Character-Based Neural Language Model Tutorial Overview Sing a Song of Sixpence Data Preparation Train Language Model Generate Text Further Reading Summary How to Develop a Word-Based Neural Language Model Tutorial Overview Framing Language Modeling Jack and Jill Nursery Rhyme Model 1: One-Word-In, One-Word-Out Sequences Model 2: Line-by-Line Sequence Model 3: Two-Words-In, One-Word-Out Sequence Further Reading Summary Project: Develop a Neural Language Model for Text Generation Tutorial Overview The Republic by Plato Data Preparation Train Language Model Use Language Model Extensions Further Reading Summary VIII Image Captioning Neural Image Caption Generation Overview Describing an Image with Text Neural Captioning Model Encoder-Decoder Architecture Further Reading Summary Neural Network Models for Caption Generation Image Caption Generation Inject Model Merge Model More on the Merge Model Further Reading Summary How to Load and Use a Pre-Trained Object Recognition Model Tutorial Overview ImageNet The Oxford VGG Models Load the VGG Model in Keras Develop a Simple Photo Classifier Further Reading Summary How to Evaluate Generated Text With the BLEU Score Tutorial Overview Bilingual Evaluation Understudy Score Calculate BLEU Scores Cumulative and Individual BLEU Scores Worked Examples Further Reading Summary How to Prepare a Photo Caption Dataset For Modeling Tutorial Overview Download the Flickr8K Dataset How to Load Photographs Pre-Calculate Photo Features How to Load Descriptions Prepare Description Text Whole Description Sequence Model Word-By-Word Model Progressive Loading Further Reading Summary Project: Develop a Neural Image Caption Generation Model Tutorial Overview Photo and Caption Dataset Prepare Photo Data Prepare Text Data Develop Deep Learning Model Evaluate Model Generate New Captions Extensions Further Reading Summary IX Machine Translation Neural Machine Translation What is Machine Translation? What is Statistical Machine Translation? What is Neural Machine Translation? Further Reading Summary What are Encoder-Decoder Models for Neural Machine Translation Encoder-Decoder Architecture for NMT Sutskever NMT Model Cho NMT Model Further Reading Summary How to Configure Encoder-Decoder Models for Machine Translation Encoder-Decoder Model for Neural Machine Translation Baseline Model Word Embedding Size RNN Cell Type Encoder-Decoder Depth Direction of Encoder Input Attention Mechanism Inference Final Model Further Reading Summary Project: Develop a Neural Machine Translation Model Tutorial Overview German to English Translation Dataset Preparing the Text Data Train Neural Translation Model Evaluate Neural Translation Model Extensions Further Reading Summary X Appendix Getting Help Official Keras Destinations Where to Get Help with Keras Where to Get Help with Natural Language How to Ask Questions Contact the Author How to Setup a Workstation for Deep Learning Overview Download Anaconda Install Anaconda Start and Update Anaconda Install Deep Learning Libraries Further Reading Summary How to Use Deep Learning in the Cloud Overview Setup Your AWS Account Launch Your Server Instance Login, Configure and Run Build and Run Models on AWS Close Your EC2 Instance Tips and Tricks for Using Keras on AWS Further Reading Summary XI Conclusions How Far You Have Come