ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Deep Learning for Natural Language Processing: Develop Deep Learning Models for your Natural Language Problems

دانلود کتاب یادگیری عمیق برای پردازش زبان طبیعی: مدل های یادگیری عمیق را برای مشکلات زبان طبیعی خود ایجاد کنید

Deep Learning for Natural Language Processing: Develop Deep Learning Models for your Natural Language Problems

مشخصات کتاب

Deep Learning for Natural Language Processing: Develop Deep Learning Models for your Natural Language Problems

ویرایش: [1.1 ed.] 
نویسندگان:   
سری: Machine Learning Mastery 
 
ناشر: Independently Published 
سال نشر: 2017 
تعداد صفحات: 397
[414] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 Mb 

قیمت کتاب (تومان) : 46,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Deep Learning for Natural Language Processing: Develop Deep Learning Models for your Natural Language Problems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب یادگیری عمیق برای پردازش زبان طبیعی: مدل های یادگیری عمیق را برای مشکلات زبان طبیعی خود ایجاد کنید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Copyright
Contents
Preface
I Introductions
	Welcome
		Who Is This Book For?
		About Your Outcomes
		How to Read This Book
		About the Book Structure
		About Python Code Examples
		About Further Reading
		About Getting Help
		Summary
II Foundations
	Natural Language Processing
		Natural Language
		Challenge of Natural Language
		From Linguistics to Natural Language Processing
		Natural Language Processing
		Further Reading
		Summary
	Deep Learning
		Deep Learning is Large Neural Networks
		Deep Learning is Hierarchical Feature Learning
		Deep Learning as Scalable Learning Across Domains
		Further Reading
		Summary
	Promise of Deep Learning for Natural Language
		Promise of Deep Learning
		Promise of Drop-in Replacement Models
		Promise of New NLP Models
		Promise of Feature Learning
		Promise of Continued Improvement
		Promise of End-to-End Models
		Further Reading
		Summary
	How to Develop Deep Learning Models With Keras
		Keras Model Life-Cycle
		Keras Functional Models
		Standard Network Models
		Further Reading
		Summary
III Data Preparation
	How to Clean Text Manually and with NLTK
		Tutorial Overview
		Metamorphosis by Franz Kafka
		Text Cleaning Is Task Specific
		Manual Tokenization
		Tokenization and Cleaning with NLTK
		Additional Text Cleaning Considerations
		Further Reading
		Summary
	How to Prepare Text Data with scikit-learn
		The Bag-of-Words Model
		Word Counts with CountVectorizer
		Word Frequencies with TfidfVectorizer
		Hashing with HashingVectorizer
		Further Reading
		Summary
	How to Prepare Text Data With Keras
		Tutorial Overview
		Split Words with text_to_word_sequence
		Encoding with one_hot
		Hash Encoding with hashing_trick
		Tokenizer API
		Further Reading
		Summary
IV Bag-of-Words
	The Bag-of-Words Model
		Tutorial Overview
		The Problem with Text
		What is a Bag-of-Words?
		Example of the Bag-of-Words Model
		Managing Vocabulary
		Scoring Words
		Limitations of Bag-of-Words
		Further Reading
		Summary
	How to Prepare Movie Review Data for Sentiment Analysis
		Tutorial Overview
		Movie Review Dataset
		Load Text Data
		Clean Text Data
		Develop Vocabulary
		Save Prepared Data
		Further Reading
		Summary
	Project: Develop a Neural Bag-of-Words Model for Sentiment Analysis
		Tutorial Overview
		Movie Review Dataset
		Data Preparation
		Bag-of-Words Representation
		Sentiment Analysis Models
		Comparing Word Scoring Methods
		Predicting Sentiment for New Reviews
		Extensions
		Further Reading
		Summary
V Word Embeddings
	The Word Embedding Model
		Overview
		What Are Word Embeddings?
		Word Embedding Algorithms
		Using Word Embeddings
		Further Reading
		Summary
	How to Develop Word Embeddings with Gensim
		Tutorial Overview
		Word Embeddings
		Gensim Python Library
		Develop Word2Vec Embedding
		Visualize Word Embedding
		Load Google's Word2Vec Embedding
		Load Stanford's GloVe Embedding
		Further Reading
		Summary
	How to Learn and Load Word Embeddings in Keras
		Tutorial Overview
		Word Embedding
		Keras Embedding Layer
		Example of Learning an Embedding
		Example of Using Pre-Trained GloVe Embedding
		Tips for Cleaning Text for Word Embedding
		Further Reading
		Summary
VI Text Classification
	Neural Models for Document Classification
		Overview
		Word Embeddings + CNN = Text Classification
		Use a Single Layer CNN Architecture
		Dial in CNN Hyperparameters
		Consider Character-Level CNNs
		Consider Deeper CNNs for Classification
		Further Reading
		Summary
	Project: Develop an Embedding + CNN Model for Sentiment Analysis
		Tutorial Overview
		Movie Review Dataset
		Data Preparation
		Train CNN With Embedding Layer
		Evaluate Model
		Extensions
		Further Reading
		Summary
	Project: Develop an n-gram CNN Model for Sentiment Analysis
		Tutorial Overview
		Movie Review Dataset
		Data Preparation
		Develop Multichannel Model
		Evaluate Model
		Extensions
		Further Reading
		Summary
VII Language Modeling
	Neural Language Modeling
		Overview
		Problem of Modeling Language
		Statistical Language Modeling
		Neural Language Models
		Further Reading
		Summary
	How to Develop a Character-Based Neural Language Model
		Tutorial Overview
		Sing a Song of Sixpence
		Data Preparation
		Train Language Model
		Generate Text
		Further Reading
		Summary
	How to Develop a Word-Based Neural Language Model
		Tutorial Overview
		Framing Language Modeling
		Jack and Jill Nursery Rhyme
		Model 1: One-Word-In, One-Word-Out Sequences
		Model 2: Line-by-Line Sequence
		Model 3: Two-Words-In, One-Word-Out Sequence
		Further Reading
		Summary
	Project: Develop a Neural Language Model for Text Generation
		Tutorial Overview
		The Republic by Plato
		Data Preparation
		Train Language Model
		Use Language Model
		Extensions
		Further Reading
		Summary
VIII Image Captioning
	Neural Image Caption Generation
		Overview
		Describing an Image with Text
		Neural Captioning Model
		Encoder-Decoder Architecture
		Further Reading
		Summary
	Neural Network Models for Caption Generation
		Image Caption Generation
		Inject Model
		Merge Model
		More on the Merge Model
		Further Reading
		Summary
	How to Load and Use a Pre-Trained Object Recognition Model
		Tutorial Overview
		ImageNet
		The Oxford VGG Models
		Load the VGG Model in Keras
		Develop a Simple Photo Classifier
		Further Reading
		Summary
	How to Evaluate Generated Text With the BLEU Score
		Tutorial Overview
		Bilingual Evaluation Understudy Score
		Calculate BLEU Scores
		Cumulative and Individual BLEU Scores
		Worked Examples
		Further Reading
		Summary
	How to Prepare a Photo Caption Dataset For Modeling
		Tutorial Overview
		Download the Flickr8K Dataset
		How to Load Photographs
		Pre-Calculate Photo Features
		How to Load Descriptions
		Prepare Description Text
		Whole Description Sequence Model
		Word-By-Word Model
		Progressive Loading
		Further Reading
		Summary
	Project: Develop a Neural Image Caption Generation Model
		Tutorial Overview
		Photo and Caption Dataset
		Prepare Photo Data
		Prepare Text Data
		Develop Deep Learning Model
		Evaluate Model
		Generate New Captions
		Extensions
		Further Reading
		Summary
IX Machine Translation
	Neural Machine Translation
		What is Machine Translation?
		What is Statistical Machine Translation?
		What is Neural Machine Translation?
		Further Reading
		Summary
	What are Encoder-Decoder Models for Neural Machine Translation
		Encoder-Decoder Architecture for NMT
		Sutskever NMT Model
		Cho NMT Model
		Further Reading
		Summary
	How to Configure Encoder-Decoder Models for Machine Translation
		Encoder-Decoder Model for Neural Machine Translation
		Baseline Model
		Word Embedding Size
		RNN Cell Type
		Encoder-Decoder Depth
		Direction of Encoder Input
		Attention Mechanism
		Inference
		Final Model
		Further Reading
		Summary
	Project: Develop a Neural Machine Translation Model
		Tutorial Overview
		German to English Translation Dataset
		Preparing the Text Data
		Train Neural Translation Model
		Evaluate Neural Translation Model
		Extensions
		Further Reading
		Summary
X Appendix
	Getting Help
		Official Keras Destinations
		Where to Get Help with Keras
		Where to Get Help with Natural Language
		How to Ask Questions
		Contact the Author
	How to Setup a Workstation for Deep Learning
		Overview
		Download Anaconda
		Install Anaconda
		Start and Update Anaconda
		Install Deep Learning Libraries
		Further Reading
		Summary
	How to Use Deep Learning in the Cloud
		Overview
		Setup Your AWS Account
		Launch Your Server Instance
		Login, Configure and Run
		Build and Run Models on AWS
		Close Your EC2 Instance
		Tips and Tricks for Using Keras on AWS
		Further Reading
		Summary
XI Conclusions
	How Far You Have Come




نظرات کاربران