ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Deep Learning for Computer Vision: Image Classification, Object Detection, and Face Recognition in Python

دانلود کتاب یادگیری عمیق برای بینایی کامپیوتر: طبقه بندی تصویر، تشخیص اشیا و تشخیص چهره در پایتون 7296236992, 3854468621, 5676993427, 2081198423, 7658261288, 2370369784

Deep Learning for Computer Vision: Image Classification, Object Detection, and Face Recognition in Python

مشخصات کتاب

Deep Learning for Computer Vision: Image Classification, Object Detection, and Face Recognition in Python

دسته بندی: برنامه نويسي
ویرایش: 1.4 
نویسندگان:   
سری: Machine Learning Mastery 
ISBN (شابک) : 7296236992, 2081198423 
ناشر: Independently Published 
سال نشر: 2019 
تعداد صفحات: 563 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 42,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Deep Learning for Computer Vision: Image Classification, Object Detection, and Face Recognition in Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب یادگیری عمیق برای بینایی کامپیوتر: طبقه بندی تصویر، تشخیص اشیا و تشخیص چهره در پایتون 7296236992, 3854468621, 5676993427, 2081198423, 7658261288, 2370369784 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب یادگیری عمیق برای بینایی کامپیوتر: طبقه بندی تصویر، تشخیص اشیا و تشخیص چهره در پایتون 7296236992, 3854468621, 5676993427, 2081198423, 7658261288, 2370369784

روش‌های یادگیری عمیق می‌توانند به نتایج پیشرفته‌ای در مشکلات بینایی رایانه‌ای مانند طبقه‌بندی تصویر، تشخیص اشیا و تشخیص چهره دست یابند. در این کتاب الکترونیکی جدید که به سبک دوستانه تسلط یادگیری ماشینی که به آن عادت کرده‌اید نوشته شده است، از ریاضیات صرف نظر کرده و مستقیماً به نتایج برسید. با توضیحات واضح، کتابخانه های استاندارد پایتون (Keras و TensorFlow 2)، و آموزش های گام به گام، خواهید فهمید که چگونه می توانید مدل های یادگیری عمیق را برای پروژه های بینایی رایانه خود توسعه دهید.


توضیحاتی درمورد کتاب به خارجی

Deep learning methods can achieve state-of-the-art results on challenging computer vision problems such as image classification, object detection, and face recognition. In this new Ebook written in the friendly Machine Learning Mastery style that you’re used to, skip the math and jump straight to getting results. With clear explanations, standard Python libraries (Keras and TensorFlow 2), and step-by-step tutorial lessons, you’ll discover how to develop deep learning models for your own computer vision projects.



فهرست مطالب

Copyright
Contents
Preface
Introductions
	Welcome
I Foundations
	Introduction to Computer Vision
		Overview
		Desire for Computers to See
		What Is Computer Vision
		Challenge of Computer Vision
		Tasks in Computer Vision
		Further Reading
		Summary
	Promise of Deep Learning for Computer Vision
		Overview
		Promises of Deep Learning
		Types of Deep Learning Network Models
		Types of Computer Vision Problems
		Further Reading
		Summary
	How to Develop Deep Learning Models With Keras
		Keras Model Life-Cycle
		Keras Functional Models
		Standard Network Models
		Further Reading
		Summary
II Image Data Preparation
	How to Load and Manipulate Images With PIL/Pillow
		Tutorial Overview
		How to Install Pillow
		How to Load and Display Images
		How to Convert Images to NumPy Arrays and Back
		How to Save Images to File
		How to Resize Images
		How to Flip, Rotate, and Crop Images
		Extensions
		Further Reading
		Summary
	How to Manually Scale Image Pixel Data
		Tutorial Overview
		Sample Image
		Normalize Pixel Values
		Center Pixel Values
		Standardize Pixel Values
		Extensions
		Further Reading
		Summary
	How to Load and Manipulate Images with Keras
		Tutorial Overview
		Test Image
		Keras Image Processing API
		How to Load an Image with Keras
		How to Convert an Image With Keras
		How to Save an Image With Keras
		Extensions
		Further Reading
		Summary
	How to Scale Image Pixel Data with Keras
		Tutorial Overview
		MNIST Handwritten Image Classification Dataset
		ImageDataGenerator Class for Pixel Scaling
		How to Normalize Images With ImageDataGenerator
		How to Center Images With ImageDataGenerator
		How to Standardize Images With ImageDataGenerator
		Extensions
		Further Reading
		Summary
	How to Load Large Datasets From Directories with Keras
		Tutorial Overview
		Dataset Directory Structure
		Example Dataset Structure
		How to Progressively Load Images
		Extensions
		Further Reading
		Summary
	How to Use Image Data Augmentation in Keras
		Tutorial Overview
		Image Data Augmentation
		Sample Image
		Image Augmentation With ImageDataGenerator
		Horizontal and Vertical Shift Augmentation
		Horizontal and Vertical Flip Augmentation
		Random Rotation Augmentation
		Random Brightness Augmentation
		Random Zoom Augmentation
		Extensions
		Further Reading
		Summary
III Convolutions and Pooling
	How to Use Different Color Channel Ordering Formats
		Tutorial Overview
		Images as 3D Arrays
		Manipulating Image Channels
		Keras Channel Ordering
		Extensions
		Further Reading
		Summary
	How Convolutional Layers Work
		Tutorial Overview
		Convolution in Convolutional Neural Networks
		Convolution in Computer Vision
		Power of Learned Filters
		Worked Example of Convolutional Layers
		Extensions
		Further Reading
		Summary
	How to Use Filter Size, Padding, and Stride
		Tutorial Overview
		Convolutional Layer
		Problem of Border Effects
		Effect of Filter Size (Kernel Size)
		Fix the Border Effect Problem With Padding
		Downsample Input With Stride
		Extensions
		Further Reading
		Summary
	How Pooling Layers Work
		Tutorial Overview
		Pooling Layers
		Detecting Vertical Lines
		Average Pooling Layer
		Max Pooling Layer
		Global Pooling Layers
		Extensions
		Further Reading
		Summary
IV Convolutional Neural Networks
	ImageNet, ILSVRC, and Milestone Architectures
		Overview
		ImageNet Dataset
		ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
		Deep Learning Milestones From ILSVRC
		Further Reading
		Summary
	How Milestone Model Architectural Innovations Work
		Tutorial Overview
		Architectural Design for CNNs
		LeNet-5
		AlexNet
		VGG
		Inception and GoogLeNet
		Residual Network or ResNet
		Further Reading
		Summary
	How to Use 1x1 Convolutions to Manage Model Complexity
		Tutorial Overview
		Convolutions Over Channels
		Problem of Too Many Feature Maps
		Downsample Feature Maps With 1x1 Filters
		Examples of How to Use 1x1 Convolutions
		Examples of 1x1 Filters in CNN Model Architectures
		Extensions
		Further Reading
		Summary
	How To Implement Model Architecture Innovations
		Tutorial Overview
		How to implement VGG Blocks
		How to Implement the Inception Module
		How to Implement the Residual Module
		Extensions
		Further Reading
		Summary
	How to Use Pre-Trained Models and Transfer Learning
		Tutorial Overview
		What Is Transfer Learning?
		Transfer Learning for Image Recognition
		How to Use Pre-Trained Models
		Models for Transfer Learning
		Examples of Using Pre-Trained Models
		Extensions
		Further Reading
		Summary
V Image Classification
	How to Classify Black and White Photos of Clothing
		Tutorial Overview
		Fashion-MNIST Clothing Classification
		Model Evaluation Methodology
		How to Develop a Baseline Model
		How to Develop an Improved Model
		How to Finalize the Model and Make Predictions
		Extensions
		Further Reading
		Summary
	How to Classify Small Photos of Objects
		Tutorial Overview
		CIFAR-10 Photo Classification Dataset
		Model Evaluation Test Harness
		How to Develop a Baseline Model
		How to Develop an Improved Model
		How to Finalize the Model and Make Predictions
		Extensions
		Further Reading
		Summary
	How to Classify Photographs of Dogs and Cats
		Tutorial Overview
		Dogs vs. Cats Prediction Problem
		Dogs vs. Cats Dataset Preparation
		Develop a Baseline CNN Model
		Develop Model Improvements
		Explore Transfer Learning
		How to Finalize the Model and Make Predictions
		Extensions
		Further Reading
		Summary
	How to Label Satellite Photographs of the Amazon Rainforest
		Tutorial Overview
		Introduction to the Planet Dataset
		How to Prepare Data for Modeling
		Model Evaluation Measure
		How to Evaluate a Baseline Model
		How to Improve Model Performance
		How to Use Transfer Learning
		How to Finalize the Model and Make Predictions
		Extensions
		Further Reading
		Summary
VI Object Detection
	Deep Learning for Object Recognition
		Overview
		What is Object Recognition?
		R-CNN Model Family
		YOLO Model Family
		Further Reading
		Summary
	How to Perform Object Detection With YOLOv3
		Tutorial Overview
		YOLO for Object Detection
		Experiencor YOLO3 for Keras Project
		Object Detection With YOLOv3
		Extensions
		Further Reading
		Summary
	How to Perform Object Detection With Mask R-CNN
		Tutorial Overview
		Mask R-CNN for Object Detection
		Matterport Mask R-CNN Project
		Object Detection With Mask R-CNN
		Extensions
		Further Reading
		Summary
	How to Develop a New Object Detection Model
		Tutorial Overview
		How to Install Mask R-CNN for Keras
		How to Prepare a Dataset for Object Detection
		How to Train Mask R-CNN Model for Kangaroo Detection
		How to Evaluate a Mask R-CNN Model
		How to Detect Kangaroos in New Photos
		Extensions
		Further Reading
		Summary
VII Face Recognition
	Deep Learning for Face Recognition
		Overview
		Faces in Photographs
		Process of Automatic Face Recognition
		Face Detection Task
		Face Recognition Tasks
		Deep Learning for Face Recognition
		Further Reading
		Summary
	How to Detect Faces in Photographs
		Tutorial Overview
		Face Detection
		Test Photographs
		Face Detection With OpenCV
		Face Detection With Deep Learning
		Extensions
		Further Reading
		Summary
	How to Perform Face Identification and Verification with VGGFace2
		Tutorial Overview
		Face Recognition
		VGGFace and VGGFace2 Models
		How to Install the keras-vggface Library
		How to Detect Faces for Face Recognition
		How to Perform Face Identification With VGGFace2
		How to Perform Face Verification With VGGFace2
		Extensions
		Further Reading
		Summary
	How to Perform Face Classification with FaceNet
		Tutorial Overview
		Face Recognition
		FaceNet Model
		How to Load a FaceNet Model in Keras
		How to Detect Faces for Face Recognition
		How to Develop a Face Classification System
		Extensions
		Further Reading
		Summary
VIII Appendix
	Getting Help
		Computer Vision Textbooks
		Programming Computer Vision Books
		Official Keras Destinations
		Where to Get Help with Keras
		How to Ask Questions
		Contact the Author
	How to Setup Python on Your Workstation
		Overview
		Download Anaconda
		Install Anaconda
		Start and Update Anaconda
		Install Deep Learning Libraries
		Further Reading
		Summary
	How to Setup Amazon EC2 for Deep Learning on GPUs
		Overview
		Setup Your AWS Account
		Launch Your Server Instance
		Login, Configure and Run
		Build and Run Models on AWS
		Close Your EC2 Instance
		Tips and Tricks for Using Keras on AWS
		Further Reading
		Summary
IX Conclusions
	How Far You Have Come




نظرات کاربران