دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: برنامه نويسي ویرایش: نویسندگان: Adrian Rosebrock سری: ISBN (شابک) : 1722487860, 9781722487867 ناشر: سال نشر: تعداد صفحات: 332 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 26 مگابایت
کلمات کلیدی مربوط به کتاب یادگیری عمیق برای دید رایانه ای با Python: ImageNet Bundle: کدنویسی، برنامه نویسی، علوم کامپیوتر، ریاضیات، منطق، ریاضیات، ریاضیات، هوش مصنوعی، یادگیری عمیق، هوش مصنوعی، یادگیری ماشینی
در صورت تبدیل فایل کتاب Deep Learning for Computer Vision with Python: ImageNet Bundle به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری عمیق برای دید رایانه ای با Python: ImageNet Bundle نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
\"ImageNetBundle:آموزش عمیق کامل برای تجربه بینایی کامپیوتر بینایی کامپیوتر.\" [trouvé sur la page de l'éditeur].
"ImageNet Bundle:The complete deep learning for computer vision experience. In this bundle, I demonstrate how to train large-scale neural networks on the massive ImageNet dataset. You just can't beat this bundle if you want to master deep learning for computer vision." [trouvé sur la page de l'éditeur].
1 Introduction 1.1 I Studied Deep Learning the Wrong Way…This Is the Right Way 1.2 Who This Book Is For 1.2.1 Just Getting Started in Deep Learning? 1.2.2 Already a Seasoned Deep Learning Practitioner? 1.3 Book Organization 1.3.1 Volume #1: Starter Bundle 1.3.2 Volume #2: Practitioner Bundle 1.3.3 Volume #3: ImageNet Bundle 1.3.4 Need to Upgrade Your Bundle? 1.4 Tools of the Trade: Python, Keras, and Mxnet 1.4.1 What About TensorFlow? 1.4.2 Do I Need to Know OpenCV? 1.5 Developing Our Own Deep Learning Toolset 1.6 Summary 2 What Is Deep Learning? 2.1 A Concise History of Neural Networks and Deep Learning 2.2 Hierarchical Feature Learning 2.3 How "Deep" Is Deep? 2.4 Summary 3 Image Fundamentals 3.1 Pixels: The Building Blocks of Images 3.1.1 Forming an Image From Channels 3.2 The Image Coordinate System 3.2.1 Images as NumPy Arrays 3.2.2 RGB and BGR Ordering 3.3 Scaling and Aspect Ratios 3.4 Summary 4 Image Classification Basics 4.1 What Is Image Classification? 4.1.1 A Note on Terminology 4.1.2 The Semantic Gap 4.1.3 Challenges 4.2 Types of Learning 4.2.1 Supervised Learning 4.2.2 Unsupervised Learning 4.2.3 Semi-supervised Learning 4.3 The Deep Learning Classification Pipeline 4.3.1 A Shift in Mindset 4.3.2 Step #1: Gather Your Dataset 4.3.3 Step #2: Split Your Dataset 4.3.4 Step #3: Train Your Network 4.3.5 Step #4: Evaluate 4.3.6 Feature-based Learning versus Deep Learning for Image Classification 4.3.7 What Happens When my Predictions Are Incorrect? 4.4 Summary 5 Datasets for Image Classification 5.1 MNIST 5.2 Animals: Dogs, Cats, and Pandas 5.3 CIFAR-10 5.4 SMILES 5.5 Kaggle: Dogs vs. Cats 5.6 Flowers-17 5.7 CALTECH-101 5.8 Tiny ImageNet 200 5.9 Adience 5.10 ImageNet 5.10.1 What Is ImageNet? 5.10.2 ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 5.11 Kaggle: Facial Expression Recognition Challenge 5.12 Indoor CVPR 5.13 Stanford Cars 5.14 Summary 6 Configuring Your Development Environment 6.1 Libraries and Packages 6.1.1 Python 6.1.2 Keras 6.1.3 Mxnet 6.1.4 OpenCV, scikit-image, scikit-learn, and more 6.2 Configuring Your Development Environment? 6.3 Preconfigured Virtual Machine 6.4 Cloud-based Instances 6.5 How to Structure Your Projects 6.6 Summary 7 Your First Image Classifier 7.1 Working with Image Datasets 7.1.1 Introducing the “Animals” Dataset 7.1.2 The Start to Our Deep Learning Toolkit 7.1.3 A Basic Image Preprocessor 7.1.4 Building an Image Loader 7.2 k-NN: A Simple Classifier 7.2.1 A Worked k-NN Example 7.2.2 k-NN Hyperparameters 7.2.3 Implementing k-NN 7.2.4 k-NN Results 7.2.5 Pros and Cons of k-NN 7.3 Summary 8 Parameterized Learning 8.1 An Introduction to Linear Classification 8.1.1 Four Components of Parameterized Learning 8.1.2 Linear Classification: From Images to Labels 8.1.3 Advantages of Parameterized Learning and Linear Classification 8.1.4 A Simple Linear Classifier With Python 8.2 The Role of Loss Functions 8.2.1 What Are Loss Functions? 8.2.2 Multi-class SVM Loss 8.2.3 Cross-entropy Loss and Softmax Classifiers 8.3 Summary 9 Optimization Methods and Regularization 9.1 Gradient Descent 9.1.1 The Loss Landscape and Optimization Surface 9.1.2 The “Gradient” in Gradient Descent 9.1.3 Treat It Like a Convex Problem (Even if It’s Not) 9.1.4 The Bias Trick 9.1.5 Pseudocode for Gradient Descent 9.1.6 Implementing Basic Gradient Descent in Python 9.1.7 Simple Gradient Descent Results 9.2 Stochastic Gradient Descent (SGD) 9.2.1 Mini-batch SGD 9.2.2 Implementing Mini-batch SGD 9.2.3 SGD Results 9.3 Extensions to SGD 9.3.1 Momentum 9.3.2 Nesterov's Acceleration 9.3.3 Anecdotal Recommendations 9.4 Regularization 9.4.1 What Is Regularization and Why Do We Need It? 9.4.2 Updating Our Loss and Weight Update To Include Regularization 9.4.3 Types of Regularization Techniques 9.4.4 Regularization Applied to Image Classification 9.5 Summary 10 Neural Network Fundamentals 10.1 Neural Network Basics 10.1.1 Introduction to Neural Networks 10.1.2 The Perceptron Algorithm 10.1.3 Backpropagation and Multi-layer Networks 10.1.4 Multi-layer Networks with Keras 10.1.5 The Four Ingredients in a Neural Network Recipe 10.1.6 Weight Initialization 10.1.7 Constant Initialization 10.1.8 Uniform and Normal Distributions 10.1.9 LeCun Uniform and Normal 10.1.10 Glorot/Xavier Uniform and Normal 10.1.11 He et al./Kaiming/MSRA Uniform and Normal 10.1.12 Differences in Initialization Implementation 10.2 Summary 11 Convolutional Neural Networks 11.1 Understanding Convolutions 11.1.1 Convolutions versus Cross-correlation 11.1.2 The “Big Matrix” and “Tiny Matrix" Analogy 11.1.3 Kernels 11.1.4 A Hand Computation Example of Convolution 11.1.5 Implementing Convolutions with Python 11.1.6 The Role of Convolutions in Deep Learning 11.2 CNN Building Blocks 11.2.1 Layer Types 11.2.2 Convolutional Layers 11.2.3 Activation Layers 11.2.4 Pooling Layers 11.2.5 Fully-connected Layers 11.2.6 Batch Normalization 11.2.7 Dropout 11.3 Common Architectures and Training Patterns 11.3.1 Layer Patterns 11.3.2 Rules of Thumb 11.4 Are CNNs Invariant to Translation, Rotation, and Scaling? 11.5 Summary 12 Training Your First CNN 12.1 Keras Configurations and Converting Images to Arrays 12.1.1 Understanding the keras.json Configuration File 12.1.2 The Image to Array Preprocessor 12.2 ShallowNet 12.2.1 Implementing ShallowNet 12.2.2 ShallowNet on Animals 12.2.3 ShallowNet on CIFAR-10 12.3 Summary 13 Saving and Loading Your Models 13.1 Serializing a Model to Disk 13.2 Loading a Pre-trained Model from Disk 13.3 Summary 14 LeNet: Recognizing Handwritten Digits 14.1 The LeNet Architecture 14.2 Implementing LeNet 14.3 LeNet on MNIST 14.4 Summary 15 MiniVGGNet: Going Deeper with CNNs 15.1 The VGG Family of Networks 15.1.1 The (Mini) VGGNet Architecture 15.2 Implementing MiniVGGNet 15.3 MiniVGGNet on CIFAR-10 15.3.1 With Batch Normalization 15.3.2 Without Batch Normalization 15.4 Summary 16 Learning Rate Schedulers 16.1 Dropping Our Learning Rate 16.1.1 The Standard Decay Schedule in Keras 16.1.2 Step-based Decay 16.1.3 Implementing Custom Learning Rate Schedules in Keras 16.2 Summary 17 Spotting Underfitting and Overfitting 17.1 What Are Underfitting and Overfitting? 17.1.1 Effects of Learning Rates 17.1.2 Pay Attention to Your Training Curves 17.1.3 What if Validation Loss Is Lower than Training Loss? 17.2 Monitoring the Training Process 17.2.1 Creating a Training Monitor 17.2.2 Babysitting Training 17.3 Summary 18 Checkpointing Models 18.1 Checkpointing Neural Network Model Improvements 18.2 Checkpointing Best Neural Network Only 18.3 Summary 19 Visualizing Network Architectures 19.1 The Importance of Architecture Visualization 19.1.1 Installing graphviz and pydot 19.1.2 Visualizing Keras Networks 19.2 Summary 20 Out-of-the-box CNNs for Classification 20.1 State-of-the-art CNNs in Keras 20.1.1 VGG16 and VGG19 20.1.2 ResNet 20.1.3 Inception V3 20.1.4 Xception 20.1.5 Can We Go Smaller? 20.2 Classifying Images with Pre-trained ImageNet CNNs 20.2.1 Classification Results 20.3 Summary 21 Case Study: Breaking Captchas with a CNN 21.1 Breaking Captchas with a CNN 21.1.1 A Note on Responsible Disclosure 21.1.2 The Captcha Breaker Directory Structure 21.1.3 Automatically Downloading Example Images 21.1.4 Annotating and Creating Our Dataset 21.1.5 Preprocessing the Digits 21.1.6 Training the Captcha Breaker 21.1.7 Testing the Captcha Breaker 21.2 Summary 22 Case Study: Smile Detection 22.1 The SMILES Dataset 22.2 Training the Smile CNN 22.3 Running the Smile CNN in Real-time 22.4 Summary 23 Your Next Steps 23.1 So, What's Next?