دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Ahmed Menshawy
سری:
ISBN (شابک) : 1788399900, 9781788399906
ناشر: Packt Publishing
سال نشر: 2018
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Deep Learning By Example: A hands-on guide to implementing advanced machine learning algorithms and neural networks به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری عمیق با مثال: راهنمای عملی برای پیاده سازی الگوریتم های پیشرفته یادگیری ماشین و شبکه های عصبی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مفاهیم اساسی یادگیری عمیق را با استفاده از Tensorflow به صورت عملی درک کنید
یادگیری عمیق زیرمجموعه ای محبوب از یادگیری ماشین است و به شما امکان می دهد مدل های پیچیده ای بسازید که سریعتر باشند و پیش بینی های دقیق تری ارائه دهند. این کتاب همراه شما برای برداشتن اولین گامها به دنیای یادگیری عمیق است، با مثالهای عملی برای تقویت درک شما از موضوع.
این کتاب با مروری سریع بر مفاهیم اساسی دادهها شروع میشود. علم و یادگیری ماشین که برای شروع یادگیری عمیق لازم است. این کتاب شما را با Tensorflow آشنا می کند، پرکاربردترین کتابخانه یادگیری ماشینی برای آموزش مدل های یادگیری عمیق. سپس با آموزش یک شبکه عصبی پیشخور عمیق برای طبقهبندی اعداد، روی اولین مشکل یادگیری عمیق خود کار میکنید و به سراغ دیگر مشکلات دنیای واقعی در بینایی کامپیوتر، پردازش زبان، تجزیه و تحلیل احساسات و غیره میروید. مدلهای یادگیری عمیق پیشرفته مانند شبکههای متخاصم مولد و کاربردهای آنها نیز در این کتاب پوشش داده شده است.
در پایان این کتاب، شما درک کاملی از تمام مفاهیم ضروری در یادگیری عمیق خواهید داشت. با کمک مثالها و کدهای ارائه شده در این کتاب، میتوانید با اطمینان بیشتری مدلهای یادگیری عمیق خود را آموزش دهید.
این کتاب دانشمندان داده و توسعه دهندگان یادگیری ماشین را هدف قرار می دهد. کسانی که می خواهند با یادگیری عمیق شروع کنند. اگر می دانید یادگیری عمیق چیست اما در مورد نحوه استفاده از آن کاملا مطمئن نیستید، این کتاب به شما نیز کمک خواهد کرد. درک آمار و مفاهیم علم داده مورد نیاز است. آشنایی با برنامه نویسی پایتون نیز مفید خواهد بود.
Grasp the fundamental concepts of deep learning using Tensorflow in a hands-on manner
Deep learning is a popular subset of machine learning, and it allows you to build complex models that are faster and give more accurate predictions. This book is your companion to take your first steps into the world of deep learning, with hands-on examples to boost your understanding of the topic.
This book starts with a quick overview of the essential concepts of data science and machine learning which are required to get started with deep learning. It introduces you to Tensorflow, the most widely used machine learning library for training deep learning models. You will then work on your first deep learning problem by training a deep feed-forward neural network for digit classification, and move on to tackle other real-world problems in computer vision, language processing, sentiment analysis, and more. Advanced deep learning models such as generative adversarial networks and their applications are also covered in this book.
By the end of this book, you will have a solid understanding of all the essential concepts in deep learning. With the help of the examples and code provided in this book, you will be equipped to train your own deep learning models with more confidence.
This book targets data scientists and machine learning developers who wish to get started with deep learning. If you know what deep learning is but are not quite sure of how to use it, this book will help you as well. An understanding of statistics and data science concepts is required. Some familiarity with Python programming will also be beneficial.
Cover Copyright and Credits Packt Upsell Contributors Table of Contents Preface Chapter 1: Data Science - A Birds\' Eye View Understanding data science by an example Design procedure of data science algorithms Data pre-processing Data cleaning Data pre-processing Feature selection Model selection Learning process Evaluating your model Getting to learn Challenges of learning Feature extraction – feature engineering Noise Overfitting Selection of a machine learning algorithm Prior knowledge Missing values Implementing the fish recognition/detection model Knowledge base/dataset Data analysis pre-processing Model building Model training and testing Fish recognition – all together Different learning types Supervised learning Unsupervised learning Semi-supervised learning Reinforcement learning Data size and industry needs Summary Chapter 2: Data Modeling in Action - The Titanic Example Linear models for regression Motivation Advertising – a financial example Dependencies Importing data with pandas Understanding the advertising data Data analysis and visualization Simple regression model Learning model coefficients Interpreting model coefficients Using the model for prediction Linear models for classification Classification and logistic regression Titanic example – model building and training Data handling and visualization Data analysis – supervised machine learning Different types of errors Apparent (training set) error Generalization/true error Summary Chapter 3: Feature Engineering and Model Complexity – The Titanic Example Revisited Feature engineering Types of feature engineering Feature selection Dimensionality reduction Feature construction Titanic example revisited Missing values Removing any sample with missing values in it Missing value inputting Assigning an average value Using a regression or another simple model to predict the values of missing variables Feature transformations Dummy features Factorizing Scaling Binning Derived features Name Cabin Ticket Interaction features The curse of dimensionality Avoiding the curse of dimensionality Titanic example revisited – all together Bias-variance decomposition Learning visibility Breaking the rule of thumb Summary Chapter 4: Get Up and Running with TensorFlow TensorFlow installation TensorFlow GPU installation for Ubuntu 16.04 Installing NVIDIA drivers and CUDA 8 Installing TensorFlow TensorFlow CPU installation for Ubuntu 16.04 TensorFlow CPU installation for macOS X TensorFlow GPU/CPU installation for Windows The TensorFlow environment Computational graphs TensorFlow data types, variables, and placeholders Variables Placeholders Mathematical operations Getting output from TensorFlow TensorBoard – visualizing learning Summary Chapter 5: TensorFlow in Action - Some Basic Examples Capacity of a single neuron Biological motivation and connections Activation functions Sigmoid Tanh ReLU Feed-forward neural network The need for multilayer networks Training our MLP – the backpropagation algorithm Step 1 – forward propagation Step 2 – backpropagation and weight updation TensorFlow terminologies – recap Defining multidimensional arrays using TensorFlow Why tensors? Variables Placeholders Operations Linear regression model – building and training Linear regression with TensorFlow Logistic regression model – building and training Utilizing logistic regression in TensorFlow Why use placeholders? Set model weights and bias Logistic regression model Training Cost function Summary Chapter 6: Deep Feed-forward Neural Networks - Implementing Digit Classification Hidden units and architecture design MNIST dataset analysis The MNIST data Digit classification – model building and training Data analysis Building the model Model training Summary Chapter 7: Introduction to Convolutional Neural Networks The convolution operation Motivation Applications of CNNs Different layers of CNNs Input layer Convolution step Introducing non-linearity The pooling step Fully connected layer Logits layer CNN basic example – MNIST digit classification Building the model Cost function Performance measures Model training Summary Chapter 8: Object Detection – CIFAR-10 Example Object detection CIFAR-10 – modeling, building, and training Used packages Loading the CIFAR-10 dataset Data analysis and preprocessing Building the network Model training Testing the model Summary Chapter 9: Object Detection – Transfer Learning with CNNs Transfer learning The intuition behind TL Differences between traditional machine learning and TL CIFAR-10 object detection – revisited Solution outline Loading and exploring CIFAR-10 Inception model transfer values Analysis of transfer values Model building and training Summary Chapter 10: Recurrent-Type Neural Networks - Language Modeling The intuition behind RNNs Recurrent neural networks architectures Examples of RNNs Character-level language models Language model using Shakespeare data The vanishing gradient problem The problem of long-term dependencies LSTM networks Why does LSTM work? Implementation of the language model Mini-batch generation for training Building the model Stacked LSTMs Model architecture Inputs Building an LSTM cell RNN output Training loss Optimizer Building the network Model hyperparameters Training the model Saving checkpoints Generating text Summary Chapter 11: Representation Learning - Implementing Word Embeddings Introduction to representation learning Word2Vec Building Word2Vec model A practical example of the skip-gram architecture Skip-gram Word2Vec implementation Data analysis and pre-processing Building the model Training Summary Chapter 12: Neural Sentiment Analysis General sentiment analysis architecture RNNs – sentiment analysis context Exploding and vanishing gradients - recap Sentiment analysis – model implementation Keras Data analysis and preprocessing Building the model Model training and results analysis Summary Chapter 13: Autoencoders – Feature Extraction and Denoising Introduction to autoencoders Examples of autoencoders Autoencoder architectures Compressing the MNIST dataset The MNIST dataset Building the model Model training Convolutional autoencoder Dataset Building the model Model training Denoising autoencoders Building the model Model training Applications of autoencoders Image colorization More applications Summary Chapter 14: Generative Adversarial Networks An intuitive introduction Simple implementation of GANs Model inputs Variable scope Leaky ReLU Generator Discriminator Building the GAN network Model hyperparameters Defining the generator and discriminator Discriminator and generator losses Optimizers Model training Generator samples from training Sampling from the generator Summary Chapter 15: Face Generation and Handling Missing Labels Face generation Getting the data Exploring the Data Building the model Model inputs Discriminator Generator Model losses Model optimizer Training the model Semi-supervised learning with Generative Adversarial Networks (GANs) Intuition Data analysis and preprocessing Building the model Model inputs Generator Discriminator Model losses Model optimizer Model training Summary Appendix: Implementing Fish Recognition Code for fish recognition Other Books You May Enjoy Index