دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Agarwal
سری:
ISBN (شابک) : 9811512159, 9789811512155
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 326
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 مگابایت
در صورت تبدیل فایل کتاب Deep Learning-Based Approaches for Sentiment Analysis (Algorithms for Intelligent Systems) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رویکردهای مبتنی بر یادگیری عمیق برای تحلیل احساسات (الگوریتمهای سیستمهای هوشمند) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This book covers deep-learning-based approaches for sentiment analysis, a relatively new, but fast-growing research area, which has significantly changed in the past few years. The book presents a collection of state-of-the-art approaches, focusing on the best-performing, cutting-edge solutions for the most common and difficult challenges faced in sentiment analysis research. Providing detailed explanations of the methodologies, the book is a valuable resource for researchers as well as newcomers to the field.
Preface Contents About the Editors Application of Deep Learning Approaches for Sentiment Analysis 1 Introduction 2 Taxonomy of Sentiment Analysis 2.1 Sentiment Analysis, Polarity, and Output 2.2 Levels of Sentiment Analysis 2.3 Domain Applicability, Training, and Testing Strategy 2.4 Language Support 2.5 Evaluation Measures 3 Text Representation for Sentiment Analysis 3.1 Embedded Vectors 3.2 Strategy of Initializing the Embedded Vectors 3.3 Enhancing the Embedded Vectors 3.4 Approximation Methods 3.5 Sampling-Based Approaches 3.6 Softmax-Based Approaches 4 Deep Learning Approaches for Sentiment Analysis 5 Evaluation Metrics for Sentiment Analysis 6 Benchmarked Datasets and Tools 7 Conclusion References Recent Trends and Advances in Deep Learning-Based Sentiment Analysis 1 Introduction 2 Related Work 3 Machine Learning Approaches for Sentiment Analysis 4 Study Rationale 5 Deep Learning Architectures 5.1 Convolutional Neural Networks 5.2 Recurrent Neural Networks 5.3 Bi-directional Recurrent Neural Network 6 Long Short-Term Memory (LSTMs) 7 Gated Recurrent Units (GRUs) 8 Attention Mechanism 9 Research Methodology 10 Approach to Sentiment Analysis Task Categorization 11 Coarse-Grain Sentiment Analysis 12 Fine-Grain Sentiment Analysis 13 Cross-Domain Sentiment Analysis 14 Conclusion and Survey Highlights References Deep Learning Adaptation with Word Embeddings for Sentiment Analysis on Online Course Reviews 1 Introduction 2 State of the Art 2.1 Sentiment Analysis in E-Learning Systems 2.2 Deep Learning for Sentiment Analysis 2.3 Word Embeddings for Sentiment Analysis 3 Word Embedding Representations for Text Mining 3.1 Word2Vec 3.2 GloVe 3.3 FastText 3.4 Intel 4 Deep Learning Components for Text Mining 4.1 Feed-Forward Neural Network (FNN) 4.2 Recurrent Neural Network (RNN) 4.3 Long Short-Term Memory (LSTM) Network 4.4 Convolutional Neural Network (CNN) 4.5 Normalization Layer (NL) 4.6 Attention Layer (AL) 4.7 Other Layers 5 Our Sentiment Predictor for E-Learning Reviews 5.1 Review Splitting 5.2 Word Embedding Modeling 5.3 Review Vectorization 5.4 Sentiment Model Definition 5.5 Sentiment Model Training and Prediction 6 Experimental Evaluation 6.1 Dataset 6.2 Baselines 6.3 Metrics 6.4 Deep Neural Network Model Regressor Performance 6.5 Contextual Word Embeddings Performance 7 Conclusions, Open Challenges, and Future Directions References Toxic Comment Detection in Online Discussions 1 Online Discussions and Toxic Comments 1.1 News Platforms and Other Online Discussions Forums 1.2 Classes of Toxicity 2 Deep Learning for Toxic Comment Classification 2.1 Comment Datasets for Supervised Learning 2.2 Neural Network Architectures 3 From Binary to Fine-Grained Classification 3.1 Why Is It a Hard Problem? 3.2 Transfer Learning 3.3 Explanations 4 Real-World Applications 4.1 Semi-automated Comment Moderation 4.2 Troll Detection 5 Current Limitations and Future Trends 5.1 Misclassification of Comments 5.2 Research Directions 6 Conclusions References Aspect-Based Sentiment Analysis of Financial Headlines and Microblogs 1 Introduction 2 Related Work 3 State-of-the-Art Models 3.1 ALA Model 3.2 IIIT Delhi Model 4 Our Methodology 4.1 Features 5 Aspect Classification Models 5.1 Models 5.2 Classification Model Training 6 Sentiment Models 6.1 Models 6.2 Sentiment Model Training 7 Evaluation 7.1 Data Set 7.2 Data Augmentation 7.3 Data Pre-processing 7.4 Metrics 7.5 Results 8 Conclusion and Future Work References Deep Learning-Based Frameworks for Aspect-Based Sentiment Analysis 1 Introduction 2 Problem Formulation 2.1 Aspect-Term Extraction 2.2 Aspect-Category Detection 3 Observation/Assumption in ABSA 4 Input Representation 5 Concepts Related to Deep Learning 5.1 Word-Embeddings 5.2 Long Short-Term Memory (LSTM) 5.3 Bi-directional Long Short-Term Memory (Bi-LSTM) 5.4 RNN with Attention 5.5 Convolution Neutral Network (CNN) 6 Deep Learning Architectures Used in ABSA 6.1 Sentiment Analysis 6.2 Aspect-Term Extraction 6.3 Aspect-Category Extraction 6.4 Aspect-Based Sentiment Detection 7 Conclusion References Transfer Learning for Detecting Hateful Sentiments in Code Switched Language 1 Introduction 1.1 Hate Speech Problem 1.2 Code Switched and Code Mixed Languages 1.3 Challenges in Code Switched and Code Mixed Languages 1.4 Deep Learning 1.5 Overview 2 Background and Related Work 2.1 Language Identification 2.2 POS Tagging 2.3 Named Entity Recognition 2.4 Sentiment Analysis 3 Dataset and Evaluation 3.1 HOT Dataset 3.2 Bohra et al. bohra2018dataset dataset 3.3 HEOT Dataset 3.4 Davidson Dataset 4 Methodology 4.1 SVM and Random Forest 4.2 Ternary Trans-CNN Model 4.3 LSTM-Based Model 4.4 MIMCT Model 5 Results 5.1 SVM and Random Forest Classifier 5.2 Ternary Trans-CNN Model 5.3 LSTM Model with Transfer Learning 5.4 MIMCT Model 6 Conclusion 7 Future Work References Multilingual Sentiment Analysis 1 Introduction 1.1 Low Resource Language 1.2 Challenges of Sentiment Analysis 1.3 Deep Learning 2 Literature Survey 2.1 High Resource Languages 2.2 Lexicon-Based Approaches 2.3 Traditional Machine Learning-Based Approaches 2.4 Low Resource Languages 3 Word Embeddings for Sentiment Analysis 3.1 Refining Word Embeddings for Sentiment Analysis 3.2 Improving Word Embedding Coverage in Low Resource Languages 4 Deep Learning Techniques for Multilingual Sentiment Analysis 4.1 Convolutional Neural Networks 4.2 Recurrent Neural Networks 4.3 Autoencoders 4.4 Bilingual Constrained Recursive Autoencoders 4.5 AROMA 4.6 Siamese Neural Networks 5 Discussion 6 Conclusion References Sarcasm Detection Using Deep Learning-Based Techniques 1 Introduction 2 Related Work 3 Grice’s Maxims 4 Challenges in Sarcasm Detection 5 Dataset Description 6 Feature Description 7 Process Outline 8 Models Used 9 Experiments and Results 10 Future Scope References Deep Learning Approaches for Speech Emotion Recognition 1 Introduction 2 Feature Extraction 3 Feature Selection 4 Classical Approaches 4.1 Speaker-Dependent SER 4.2 Speaker-Independent SER 4.3 Other Models 5 Deep Learning Approaches 6 System Overview 6.1 Classical Approach for SER 6.2 Deep Learning Approaches for SER 6.3 Critical Comparision 7 Evaluation 7.1 Dataset Description 7.2 Original Results 7.3 Results Obtained 8 Comparison of Existing Approaches 9 Conclusions References Bidirectional Long Short-Term Memory-Based Spatio-Temporal in Community Question Answering 1 Introduction 2 Related Works 3 Methodology 3.1 Preprocessing Steps 3.2 Best Answer Prediction 4 Experimental Setup: Answer Classification 5 Experiment II: Answer Ranking 6 Conclusion References Comparing Deep Neural Networks to Traditional Models for Sentiment Analysis in Turkish Language 1 Introduction 2 Methodology 3 Experimental Setup and Results 3.1 Dataset 3.2 Traditional BOW Approach 3.3 Deep Learning Architecture 4 Conclusion References