دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Pramod Singh Rathore (editor), Vishal Dutt (editor), Rashmi Agrawal (editor), Satya Murthy Sasubilli (editor), Srinivasa Rao Swarna (editor) سری: ISBN (شابک) : 1119760526, 9781119760528 ناشر: Wiley-Scrivener سال نشر: 2022 تعداد صفحات: 304 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Deep Learning Approaches to Cloud Security: Deep Learning Approaches for Cloud Security به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رویکردهای یادگیری عمیق برای امنیت ابری: رویکردهای یادگیری عمیق برای امنیت ابری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این تیم تحریریه با پوشش یکی از مهمترین موضوعات جامعه امروزی ما، امنیت ابری، به راهحلهایی میپردازد که از رویکردهای یادگیری عمیق در حال تکامل، راهحلهایی که به رایانهها اجازه میدهند یادگیری از تجربه و درک جهان از نظر سلسله مراتبی از مفاهیم، با هر مفهومی که از طریق ارتباط آن با مفاهیم سادهتر تعریف میشود.
یادگیری عمیق سریعترین رشته در حال رشد در علوم کامپیوتر است. الگوریتمها و تکنیکهای یادگیری عمیق در زمینههای مختلفی مانند ترجمه ماشینی خودکار، تولید دستخط خودکار، تشخیص بصری، تشخیص تقلب، و تشخیص تاخیر رشد در کودکان مفید هستند. با این حال، بهکارگیری روشها یا الگوریتمهای یادگیری عمیق با موفقیت در این زمینهها نیاز به تلاشی هماهنگ دارد، که تحقیقات یکپارچهای را بین متخصصان از رشتههای مختلف از علم داده تا تجسم تقویت میکند. این کتاب جدیدترین رویکردهای یادگیری عمیق را در این زمینهها، از جمله حوزههای تشخیص و پیشبینی، و همچنین توسعه چارچوب آینده، ساخت سیستمهای خدماتی و جنبههای تحلیلی ارائه میدهد. در تمامی این مباحث از رویکردهای یادگیری عمیق مانند شبکه های عصبی مصنوعی، منطق فازی، الگوریتم های ژنتیک و مکانیسم های ترکیبی استفاده شده است. این کتاب برای پرداختن به مدلسازی و پیشبینی عملکرد سیستمهای امنیتی ابری کارآمد در نظر گرفته شده است، در نتیجه ابعاد جدیدی را به این زمینه به سرعت در حال تکامل میبخشد.
این جلد جدید پیشگامانه، موضوعات و روندهای یادگیری عمیق، پر کردن شکاف تحقیقاتی، و ارائه راهحلهایی برای چالشهای پیش روی مهندس یا دانشمند هر روزه در این حوزه را ارائه میکند. چه برای مهندس کهنه کار و چه برای دانشجو، این یکی از موارد ضروری برای هر کتابخانه است.
رویکردهای یادگیری عمیق برای امنیت ابری:
مخاطبان: دانشمندان علوم کامپیوتر، دانشمندان و مهندسان کار با فناوری اطلاعات، طراحی، امنیت شبکه و ساخت، محققان کامپیوتر، الکترونیک و امنیت برق و شبکه، حوزه یکپارچه، d تجزیه و تحلیل داده ها، و دانش آموزان در این زمینه ها
Covering one of the most important subjects to our society today, cloud security, this editorial team delves into solutions taken from evolving deep learning approaches, solutions allowing computers to learn from experience and understand the world in terms of a hierarchy of concepts, with each concept defined through its relation to simpler concepts.
Deep learning is the fastest growing field in computer science. Deep learning algorithms and techniques are found to be useful in different areas like automatic machine translation, automatic handwriting generation, visual recognition, fraud detection, and detecting developmental delay in children. However, applying deep learning techniques or algorithms successfully in these areas needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization. This book provides state of the art approaches of deep learning in these areas, including areas of detection and prediction, as well as future framework development, building service systems and analytical aspects. In all these topics, deep learning approaches, such as artificial neural networks, fuzzy logic, genetic algorithms, and hybrid mechanisms are used. This book is intended for dealing with modeling and performance prediction of the efficient cloud security systems, thereby bringing a newer dimension to this rapidly evolving field.
This groundbreaking new volume presents these topics and trends of deep learning, bridging the research gap, and presenting solutions to the challenges facing the engineer or scientist every day in this area. Whether for the veteran engineer or the student, this is a must-have for any library.
Deep Learning Approaches to Cloud Security:
Audience: Computer scientists, scientists and engineers working with information technology, design, network security, and manufacturing, researchers in computers, electronics, and electrical and network security, integrated domain, and data analytics, and students in these areas
Cover Half-Title Page Series Page Title Page Copyright Page Contents Foreword Preface 1 Biometric Identification Using Deep Learning for Advance Cloud Security 1.1 Introduction 1.2 Techniques of Biometric Identification 1.2.1 Fingerprint Identification 1.2.2 Iris Recognition 1.2.3 Facial Recognition 1.2.4 Voice Recognition 1.3 Approaches 1.3.1 Feature Selection 1.3.2 Feature Extraction 1.3.3 Face Marking 1.3.4 Nearest Neighbor Approach 1.4 Related Work, A Review 1.5 Proposed Work 1.6 Future Scope 1.7 Conclusion References 2 Privacy in Multi-Tenancy Cloud Using Deep Learning 2.1 Introduction 2.2 Basic Structure 2.2.1 Basic Structure of Cloud Computing 2.2.2 Concept of Multi-Tenancy 2.2.3 Concept of Multi-Tenancy with Cloud Computing 2.3 Privacy in Cloud Environment Using Deep Learning 2.4 Privacy in Multi-Tenancy with Deep Learning Concept 2.5 Related Work 2.6 Conclusion References 3 Emotional Classification Using EEG Signals and Facial Expression: A Survey 3.1 Introduction 3.2 Related Works 3.3 Methods 3.3.1 EEG Signal Pre-Processing 3.3.1.1 Discrete Fourier Transform (DFT) 3.3.1.2 Least Mean Square (LMS) Algorithm 3.3.1.3 Discrete Cosine Transform (DCT) 3.3.2 Feature Extraction Techniques 3.3.3 Classification Techniques 3.4 BCI Applications 3.4.1 Possible BCI Uses 3.4.2 Communication 3.4.3 Movement Control 3.4.4 Environment Control 3.4.5 Locomotion 3.5 Cloud-Based EEG Overview 3.5.1 Data Backup and Restoration 3.6 Conclusion References 4 Effective and Efficient Wind Power Generation Using Bifarious Solar PV System 4.1 Introduction 4.2 Study of Bi-Facial Solar Panel 4.3 Proposed System 4.3.1 Block Diagram 4.3.2 DC Motor Mechanism 4.3.3 Battery Bank 4.3.4 System Management Using IoT 4.3.5 Structure of Proposed System 4.3.6 Spoiler Design 4.3.7 Working Principle of Proposed System 4.3.8 Design and Analysis 4.4 Applications of IoT in Renewable Energy Resources 4.4.1 Wind Turbine Reliability Using IoT 4.4.2 Siting of Wind Resource Using IoT 4.4.3 Application of Renewable Energy in Medical Industries 4.4.4 Data Analysis Using Deep Learning 4.5 Conclusion References 5 Background Mosaicing Model for Wide Area Surveillance System 5.1 Introduction 5.2 Related Work 5.3 Methodology 5.3.1 Feature Extraction 5.3.2 Background Deep Learning Model Based on Mosaic 5.3.3 Foreground Segmentation 5.4 Results and Discussion 5.5 Conclusion References 6 Prediction of CKD Stage 1 Using Three Different Classifiers 6.1 Introduction 6.2 Materials and Methods 6.3 Results and Discussion 6.4 Conclusions and Future Scope References 7 Classification of MRI Images to Aid in Diagnosis of Neurological Disorder Using SVM 7.1 Introduction 7.2 Methodology 7.2.1 Data Acquisition 7.2.2 Image Preprocessing 7.2.3 Segmentation 7.2.4 Feature Extraction 7.2.5 Classification 7.3 Results and Discussions 7.3.1 Preprocessing 7.3.2 Classification Validation 7.4 Conclusion References 8 Convolutional Networks 8.1 Introduction 8.2 Convolution Operation 8.3 CNN 8.4 Practical Applications 8.4.1 Audio Data 8.4.2 Image Data 8.4.3 Text Data 8.5 Challenges of Profound Models 8.6 Deep Learning In Object Detection 8.7 CNN Architectures 8.8 Challenges of Item Location 8.8.1 Scale Variation Problem 8.8.2 Occlusion Problem 8.8.3 Deformation Problem References 9 Categorization of Cloud Computing & Deep Learning 9.1 Introduction to Cloud Computing 9.1.1 Cloud Computing 9.1.2 Cloud Computing: History and Evolution 9.1.3 Working of Cloud 9.1.4 Characteristics of Cloud Computing 9.1.5 Different Types of Cloud Computing Service Models 9.1.5.1 Infrastructure as A Service (IAAS) 9.1.5.2 Platform as a Service (PAAS) 9.1.5.3 Software as a Service (SAAS) 9.1.6 Cloud Computing Advantages and Disadvantages 9.1.6.1 Advantages of Cloud Computing 9.1.6.2 Disadvantages of Cloud Computing 9.2 Introduction to Deep Learning 9.2.1 History and Revolution of Deep Learning 9.2.1.1 Development of Deep Learning Algorithms 9.2.1.2 The FORTRAN Code for Back Propagation 9.2.1.3 Deep Learning from the 2000s and Beyond 9.2.1.4 The Cat Experiment 9.2.2 Neural Networks 9.2.2.1 Artificial Neural Networks 9.2.2.2 Deep Neural Networks 9.2.3 Applications of Deep Learning 9.2.3.1 Automatic Speech Recognition 9.2.3.2 Electromyography (EMG) Recognition 9.2.3.3 Image Recognition 9.2.3.4 Visual Art Processing 9.2.3.5 Natural Language Processing 9.2.3.6 Drug Discovery and Toxicology 9.2.3.7 Customer Relationship Management 9.2.3.8 Recommendation Systems 9.2.3.9 Bioinformatics 9.2.3.10 Medical Image Analysis 9.2.3.11 Mobile Advertising 9.2.3.12 Image Restoration 9.2.3.13 Financial Fraud Detection 9.2.3.14 Military 9.3 Conclusion References 10 Smart Load Balancing in Cloud Using Deep Learning 10.1 Introduction 10.2 Load Balancing 10.2.1 Static Algorithm 10.2.2 Dynamic (Run-Time) Algorithms 10.3 Load Adjusting in Distributing Computing 10.3.1 Working of Load Balancing 10.4 Cloud Load Balancing Criteria (Measures) 10.5 Load Balancing Proposed for Cloud Computing 10.5.1 Calculation of Load Balancing in the Whole System 10.6 Load Balancing in Next Generation Cloud Computing 10.7 Dispersed AI Load Adjusting Methodology in Distributed Computing Administrations 10.7.1 Quantum Isochronous Parallel 10.7.2 Phase Isochronous Parallel 10.7.3 Dynamic Isochronous Coordinate Strategy 10.8 Adaptive-Dynamic Synchronous Coordinate Strategy 10.8.1 Adaptive Quick Reassignment (AdaptQR) 10.8.2 A-DIC (Adaptive-Dynamic Synchronous Parallel) 10.9 Conclusion References 11 Biometric Identification for Advanced Cloud Security 11.1 Introduction 11.1.1 Biometric Identification 11.1.2 Biometric Characteristic 11.1.3 Types of Biometric Data 11.1.3.1 Face Recognition 11.1.3.2 Hand Vein 11.1.3.3 Signature Verification 11.1.3.4 Iris Recognition 11.1.3.5 Voice Recognition 11.1.3.6 Fingerprints 11.2 Literature Survey 11.3 Biometric Identification in Cloud Computing 11.3.1 How Biometric Authentication is Being Used on the Cloud Platform 11.4 Models and Design Goals 11.4.1 Models 11.4.1.1 System Model 11.4.1.2 Threat Model 11.4.2 Design Goals 11.5 Face Recognition Method as a Biometric Authentication 11.6 Deep Learning Techniques for Big Data in Biometrics 11.6.1 Issues and Challenges 11.6.2 Deep Learning Strategies For Biometric Identification 11.7 Conclusion References 12 Application of Deep Learning in Cloud Security 12.1 Introduction 12.2 Literature Review 12.3 Deep Learning 12.4 The Uses of Fields in Deep Learning 12.5 Conclusion References 13 Real Time Cloud Based Intrusion Detection 13.1 Introduction 13.2 Literature Review 13.3 Incursion In Cloud 13.3.1 Denial of Service (DoS) Attack 13.3.2 Insider Attack 13.3.3 User To Root (U2R) Attack 13.3.4 Port Scanning 13.4 Intrusion Detection System 13.4.1 Signature-Based Intrusion Detection System (SIDS) 13.4.2 Anomaly-Based Intrusion Detection System (AIDS) 13.4.3 Intrusion Detection System Using Deep Learning 13.5 Types of IDS in Cloud 13.5.1 Host Intrusion Detection System 13.5.2 Network Based Intrusion Detection System 13.5.3 Distributed Based Intrusion Detection System 13.6 Model of Deep Learning 13.6.1 ConvNet Model 13.6.2 Recurrent Neural Network 13.6.3 Multi-Layer Perception Model 13.7 KDD Dataset 13.8 Evaluation 13.9 Conclusion References 14 Applications of Deep Learning in Cloud Security 14.1 Introduction 14.1.1 Data Breaches 14.1.2 Accounts Hijacking 14.1.3 Insider Threat 14.1.3.1 Malware Injection 14.1.3.2 Abuse of Cloud Services 14.1.3.3 Insecure APIs 14.1.3.4 Denial of Service Attacks 14.1.3.5 Insufficient Due Diligence 14.1.3.6 Shared Vulnerabilities 14.1.3.7 Data Loss 14.2 Deep Learning Methods for Cloud Cyber Security 14.2.1 Deep Belief Networks 14.2.1.1 Deep Autoencoders 14.2.1.2 Restricted Boltzmann Machines 14.2.1.3 DBNs, RBMs, or Deep Autoencoders Coupled with Classification Layers 14.2.1.4 Recurrent Neural Networks 14.2.1.5 Convolutional Neural Networks 14.2.1.6 Generative Adversarial Networks 14.2.1.7 Recursive Neural Networks 14.2.2 Applications of Deep Learning in Cyber Security 14.2.2.1 Intrusion Detection and Prevention Systems (IDS/IPS) 14.2.2.2 Dealing with Malware 14.2.2.3 Spam and Social Engineering Detection 14.2.2.4 Network Traffic Analysis 14.2.2.5 User Behaviour Analytics 14.2.2.6 Insider Threat Detection 14.2.2.7 Border Gateway Protocol Anomaly Detection 14.2.2.8 Verification if Keystrokes were Typed by a Human 14.3 Framework to Improve Security in Cloud Computing 14.3.1 Introduction to Firewalls 14.3.2 Importance of Firewalls 14.3.2.1 Prevents the Passage of Unwanted Content 14.3.2.2 Prevents Unauthorized Remote Access 14.3.2.3 Restrict Indecent Content 14.3.2.4 Guarantees Security Based on Protocol and IP Address 14.3.2.5 Protects Seamless Operations in Enterprises 14.3.2.6 Protects Conversations and Coordination Contents 14.3.2.7 Restricts Online Videos and Games from Displaying Destructive Content 14.3.3 Types of Firewalls 14.3.3.1 Proxy-Based Firewalls 14.3.3.2 Stateful Firewalls 14.3.3.3 Next-Generation Firewalls (NGF) 14.3.3.4 Web Application Firewalls (WAF) 14.3.3.5 Working of WAF 14.3.3.6 How Web Application Firewalls (WAF) Work 14.3.3.7 Attacks that Web Application Firewalls Prevent 14.3.3.8 Cloud WAF 14.4 WAF Deployment 14.4.1 Web Application Firewall (WAF) Security Models 14.4.2 Firewall-as-a-Service (FWaaS) 14.4.3 Basic Difference Between a Cloud Firewall and a Next-Generation Firewall (NGFW) 14.4.4 Introduction and Effects of Firewall Network Parameters on Cloud Computing 14.5 Conclusion References About the Editors Index Also of Interest EULA