دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Shuping Wan. Jiuying Dong
سری:
ISBN (شابک) : 9811515204, 9789811515200
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 326
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Decision Making Theories and Methods Based on Interval-Valued Intuitionistic Fuzzy Sets به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه ها و روش های تصمیم گیری بر اساس مجموعه های فازی شهودی با ارزش بازه ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این اولین کتابی است که مقدمه ای جامع و سیستماتیک برای روش های رتبه بندی مجموعه های فازی شهودی با ارزش بازه ای، روش های تصمیم گیری چند معیاره با مجموعه های فازی شهودی با ارزش فاصله ای و روش های تصمیم گیری گروهی با روابط ترجیحی فازی شهودی با ارزش فاصله ای شامل مثالها و تصاویر کاربردی متعدد با جداول و شکلها و ارائه آخرین پیشرفتهای تحقیقاتی نویسندگان، منبع ارزشمندی برای محققان و متخصصان در زمینههای ریاضیات فازی، تحقیق در عملیات، علم اطلاعات، علوم مدیریت و تجزیه و تحلیل تصمیمگیری است.
This is the first book to provide a comprehensive and systematic introduction to the ranking methods for interval-valued intuitionistic fuzzy sets, multi-criteria decision-making methods with interval-valued intuitionistic fuzzy sets, and group decision-making methods with interval-valued intuitionistic fuzzy preference relations. Including numerous application examples and illustrations with tables and figures and presenting the authors’ latest research developments, it is a valuable resource for researchers and professionals in the fields of fuzzy mathematics, operations research, information science, management science and decision analysis.
Preface Contents 1 A Possibility Degree Method for Interval-Valued Intuitionistic Fuzzy Multi-attribute Group Decision Making Abstract 1.1 Introduction 1.2 A New Ranking Method of IVIFS from the Probability Viewpoint 1.2 A New Ranking Method of IVIFS from the Probability Viewpoint 1.2.1 New Ranking Method for Intervals from the Probability Viewpoint 1.2.1 New Ranking Method for Intervals from the Probability Viewpoint 1.2.1 New Ranking Method for Intervals from the Probability Viewpoint 1.2.2 New Ranking Method for IVIFNs Based on the Possibility Degree 1.2.2 New Ranking Method for IVIFNs Based on the Possibility Degree 1.2.2 New Ranking Method for IVIFNs Based on the Possibility Degree 1.2.3 Comparative Analysis with Score and Accuracy Functions for IVIFNs 1.3 Ordered Weighted Average Operator and Hybrid Weighted Average Operator for IVIFNs 1.3.1 Weighted Average Operator for IVIFNs 1.3.1 Weighted Average Operator for IVIFNs 1.3.2 Proposed Ordered Weighted Average Operator for IVIFNs 1.3.2 Proposed Ordered Weighted Average Operator for IVIFNs 1.3.3 Proposed Hybrid Weighted Average Operator for IVIFNs 1.3.3 Proposed Hybrid Weighted Average Operator for IVIFNs 1.3.3 Proposed Hybrid Weighted Average Operator for IVIFNs 1.4 MAGDM Problem and Method with IVIFS 1.4.1 Problem Description for MAGDM with IVIFS 1.4.2 Determination of the Weights of DMs 1.4.2 Determination of the Weights of DMs 1.4.3 Group Decision Making Method 1.5 An Air-Condition System Selection Example and Comparison Analysis 1.5.1 An Air-Condition System Selection Problem and the Analysis Process 1.5.2 Comparison Analysis of the Obtained Results 1.6 Conclusions References 2 A New Method for Atanassov’s Interval-Valued Intuitionistic Fuzzy MAGDM with Incomplete Attribute Weight Information Abstract 2.1 Introduction 2.2 Preliminaries 2.2.1 Interval Objective Programming 2.2.2 Orderings of Intervals 2.2.3 Atanassov’s Intuitionistic Fuzzy Set and Atanassov’s Interval-Valued Intuitionistic Fuzzy Set 2.3 A Novel Method for MAGDM with AIVIFVs and Incomplete Attribute Weight Information 2.3.1 Presentation of the Problems 2.3.2 Determine the DMs’ Weights with Respect to Different Attributes 2.3.2.1 Calculate the Similarity Degree Based on an Extended TOPSIS 2.3.2.2 Calculate Proximity Degree Using the Distance Measure 2.3.2.3 Obtain the Weights of DMs with Respect to Different Attributes 2.3.3 Converting Individual Decision Matrices into a Collective Interval Matrix 2.3.4 Construct Multi-objective Interval-Programming for Deriving Attribute Weights 2.3.5 Decision Process and Algorithm for MAGDM with AIVIFVs 2.4 A Real-World R & D Project Selection Example and Comparison Analyses 2.4.1 A Real-World R & D Project Selection Problem and the Solution Process 2.4.2 Comparison with the Extended TOPSIS Method 2.4.3 Comparison with Barrenechea et al.’s Method 2.5 Conclusions References 3 Interval-Valued Intuitionistic Fuzzy Mathematical Programming Method for Hybrid Multi-criteria Group Decision Making with Interval-Valued Intuitionistic Fuzzy Truth Degrees Abstract 3.1 Introduction 3.2 Basic Concepts 3.2.1 Concepts of Interval-Valued Intuitionistic Fuzzy Sets and Distances 3.2.2 Definition and Distance for Trapezoidal Fuzzy Numbers and Triangular Fuzzy Numbers 3.2.3 Linguistic Variables 3.3 Hybrid MCGDM Problems Considering Alternative Comparisons with IVIF Truth Degrees 3.3.1 Hybrid MCGDM Problems with IVIF Truth Degrees and Incomplete Weight Information 3.3.2 Normalization Method 3.4 IVIF Mathematical Programming Method for Hybrid MCGDM 3.4.1 IVIFS-Type Consistency and Inconsistency Measurements 3.4.2 Bi-Objective IVIF Mathematical Programming Model 3.4.3 Goal Programming Approach to Solving Bi-Objective IVIF Mathematical Programming Model 3.4.4 GDM Process and Steps for Solving Hybrid MCGDM 3.5 Empirical Example of Critical Infrastructure 3.5.1 A Critical Infrastructure Evaluation Example and the Analysis Process 3.5.2 Comparison Analysis with the Existing LINMAP Methods 3.6 Conclusions Appendix 1 Appendix 2 References 4 A Selection Method Based on MAGDM with Interval-Valued Intuitionistic Fuzzy Sets Abstract 4.1 Introduction 4.2 Preliminaries 4.2.1 Interval-Valued Intuitionistic Fuzzy Set 4.2.2 Gray Relation Analysis 4.3 A Novel Method for MAGDM with IVIFSs and Incomplete Attribute Weight Information 4.3.1 Determine the Weights of Experts by the Extended GRA Method 4.3.2 Integrate Individual Decision Matrices into a Collective Matrix 4.3.3 Identify the Attribute Weights by a New Multi-objective Linear Programming Model 4.3.4 Decision Process and Algorithm for MAGDM Problems with IVIFSs 4.3.5 Decision Support System Framework Based on MAGDM with IVIFSs 4.4 A Cloud Service Selection Problem and Comparison Analysis 4.4.1 A Cloud Service Provider Selection Problem and the Solution Process 4.4.2 Sensitivity Analysis for Parameter 4.4.3 Comparison Analysis with the Method Using the Score Function 4.5 Conclusions References 5 Aggregating Decision Information into Interval-Valued Intuitionistic Fuzzy Numbers for Heterogeneous Multi-attribute Group Decision Making Abstract 5.1 Introduction 5.2 Some Basic Concepts 5.2.1 Interval-Valued Intuitionistic Fuzzy Set 5.2.2 Definitions and Distances for Real Number, Interval Number, TFN and TrFN 5.3 Aggregating Heterogeneous Decision Information into IVIFNs 5.3.1 Presentation of Heterogeneous MAGDM Problem 5.3.2 A General Method for Aggregating Heterogeneous Decision Information into IVIFNs 5.3.2.1 Compute the Qsd, Qdd and Qud 5.3.2.2 Calculate Qsi, Qdi and Qui 5.3.2.3 Induce an IVIFN 5.3.3 Concrete Computation Formulas for Aggregating Heterogeneous Information into IVIFNs 5.3.3.1 For Trapezoidal Fuzzy Numbers 5.3.3.2 For Triangular Fuzzy Numbers 5.3.3.3 For Interval Numbers 5.3.3.4 For Real Numbers 5.4 A Novel Approach for Heterogeneous MAGDM Problems 5.4.1 Construct an Intuitionistic Fuzzy Programming Model to Determine the Attribute Weights 5.4.2 Algorithm for Solving Heterogeneous MAGDM 5.5 Comparison Analysis with Existing Methods 5.6 Illustrative Examples 5.6.1 An IT Outsourcing Service Provider Evaluation Example 5.6.1.1 Decision Process Using the Proposed Method 5.6.1.2 Comparison with Extended TOPSIS Method 5.6.2 A Supplier Selection Example 5.7 Conclusions References 6 A Novel Method for Group Decision Making with Interval-Valued Atanassov Intuitionistic Fuzzy Preference Relations Abstract 6.1 Introduction 6.2 Multiplicative Consistency of Atanassov Intuitionistic Fuzzy Preference Relations 6.2.1 A New Multiplicative Consistency Index of Atanassov Intuitionistic Fuzzy Preference Relations 6.2.1 A New Multiplicative Consistency Index of Atanassov Intuitionistic Fuzzy Preference Relations 6.2.1 A New Multiplicative Consistency Index of Atanassov Intuitionistic Fuzzy Preference Relations 6.2.1 A New Multiplicative Consistency Index of Atanassov Intuitionistic Fuzzy Preference Relations 6.2.1 A New Multiplicative Consistency Index of Atanassov Intuitionistic Fuzzy Preference Relations 6.2.1 A New Multiplicative Consistency Index of Atanassov Intuitionistic Fuzzy Preference Relations 6.2.1 A New Multiplicative Consistency Index of Atanassov Intuitionistic Fuzzy Preference Relations 6.2.1 A New Multiplicative Consistency Index of Atanassov Intuitionistic Fuzzy Preference Relations 6.2.1 A New Multiplicative Consistency Index of Atanassov Intuitionistic Fuzzy Preference Relations 6.2.2 An Iterative Algorithm for Repairing the Consistency of AIFPRs 6.2.2 An Iterative Algorithm for Repairing the Consistency of AIFPRs 6.2.2 An Iterative Algorithm for Repairing the Consistency of AIFPRs 6.3 Multiplicative Consistency of IV-AIFPRs 6.3.1 Define and Check Multiplicative Consistency of IV-AIFPRs 6.3.1 Define and Check Multiplicative Consistency of IV-AIFPRs 6.3.1 Define and Check Multiplicative Consistency of IV-AIFPRs 6.3.1 Define and Check Multiplicative Consistency of IV-AIFPRs 6.3.1 Define and Check Multiplicative Consistency of IV-AIFPRs 6.3.1 Define and Check Multiplicative Consistency of IV-AIFPRs 6.3.1 Define and Check Multiplicative Consistency of IV-AIFPRs 6.3.1 Define and Check Multiplicative Consistency of IV-AIFPRs 6.3.1 Define and Check Multiplicative Consistency of IV-AIFPRs 6.3.2 Repair Multiplicative Consistency of IV-AIFPRs 6.3.2 Repair Multiplicative Consistency of IV-AIFPRs 6.4 A Novel Method for Group Decision Making with IV-AIFPRs 6.4.1 Determine DMs’ Weights Objectively and Integrate Individual IV-AIFPRs 6.4.1 Determine DMs’ Weights Objectively and Integrate Individual IV-AIFPRs 6.4.2 Derive IVAIF Priority Weights and Rank Alternatives 6.4.2.1 Derive IVAIF Priority Weights of Alternatives 6.4.2.2 A TOPSIS Based Approach to Ranking IVAIF Priority Weights 6.4.2.2 A TOPSIS Based Approach to Ranking IVAIF Priority Weights 6.4.3 A Novel Method for Solving GDM Problems with IV-AIFPRs 6.5 A Practical Example of a Virtual Enterprise Partner Selection and Comparative Analyses 6.5.1 A Practical Example of a Virtual Enterprise Partner Selection 6.5.2 Comparative Analyses 6.5.2.1 Comparison with Liao’s Method 6.5.2.2 Comparison with Other Existing Group Decision Making Methods 6.6 Conclusions Appendix 1 References 7 Additive Consistent Interval-Valued Atanassov Intuitionistic Fuzzy Preference Relation and Likelihood Comparison Algorithm Based Group Decision Making Abstract 7.1 Introduction 7.2 Preliminaries 7.2 Preliminaries 7.2 Preliminaries 7.2 Preliminaries 7.2 Preliminaries 7.2 Preliminaries 7.3 A New Likelihood Comparison Algorithm of IVAIFVs 7.3 A New Likelihood Comparison Algorithm of IVAIFVs 7.4 Additive Consistency Analyses for IVAIFPR 7.4.1 Additive Consistency Definition of IVAIFPR 7.4.1 Additive Consistency Definition of IVAIFPR 7.4.1 Additive Consistency Definition of IVAIFPR 7.4.2 Derive the IVAIF Priority Weights from IVAIFPR 7.5 Method for Solving the Group Decision Making Problems with IVAIFPRs 7.5.1 Description for GDM Problems with IVAIFPRs 7.5.2 Determination of DMs’ Weights 7.5.2 Determination of DMs’ Weights 7.5.3 Method for Group Decision Making with IVAIFPRs 7.5.3 Method for Group Decision Making with IVAIFPRs 7.5.3 Method for Group Decision Making with IVAIFPRs 7.6 An Example of ERP System Selection and Comparative Analysis 7.6.1 A Practical Example of ERP System Selection 7.6.2 Comparative Analysis with Existing GDM Methods 7.7 Conclusions Appendix 1 References 8 A Three-Phase Method for Group Decision Making with Interval-Valued Intuitionistic Fuzzy Preference Relations Abstract 8.1 Introduction 8.2 Preliminaries 8.2.1 Some Related Concepts on IFPR 8.2.1 Some Related Concepts on IFPR 8.2.1 Some Related Concepts on IFPR 8.2.1 Some Related Concepts on IFPR 8.2.1 Some Related Concepts on IFPR 8.2.1 Some Related Concepts on IFPR 8.2.1 Some Related Concepts on IFPR 8.2.1 Some Related Concepts on IFPR 8.2.2 Additive Consistency of IVIFPR 8.2.2 Additive Consistency of IVIFPR 8.2.2 Additive Consistency of IVIFPR 8.2.2 Additive Consistency of IVIFPR 8.2.2 Additive Consistency of IVIFPR 8.2.2 Additive Consistency of IVIFPR 8.3 Determination of the Intuitionistic Fuzzy Priority Weights from an IVIFPR 8.3.1 Extracting a Risk Attitudinal-Based Consistent IFPR from an IVIFPR 8.3.1 Extracting a Risk Attitudinal-Based Consistent IFPR from an IVIFPR 8.3.2 Deriving the Intuitionistic Fuzzy Priority Weights from the Extractive IFPR 8.3.2 Deriving the Intuitionistic Fuzzy Priority Weights from the Extractive IFPR 8.4 A Novel Three-Phase Method for Solving GDM with IVIFPRs 8.4.1 Presentation of Problem for GDM with IVIFPRs 8.4.2 Integrating Individual IVIFPRs to a Collective One 8.4.2 Integrating Individual IVIFPRs to a Collective One 8.4.2 Integrating Individual IVIFPRs to a Collective One 8.4.3 A Three-Phase Method for GDM with IVIFPRs 8.5 An Example of Network System Selection and Comparison Analyses 8.5.1 A Network System Selection Example and the Analysis Process 8.5.2 Comparison Analysis with Xu’s Method 8.5.3 Comparison Analysis with Wang’s Method 8.6 Conclusions References 9 A Group Decision-Making Method Considering Both the Group Consensus and Multiplicative Consistency of Interval-Valued Intuitionistic Fuzzy Preference Relations Abstract 9.1 Introduction 9.2 Preliminaries 9.2 Preliminaries 9.2 Preliminaries 9.2 Preliminaries 9.3 A New Ranking Method of IVIFVs 9.3.1 A New Ranking Method of IVIFVs 9.3.1 A New Ranking Method of IVIFVs 9.3.2 Comparison with Existing Ranking Methods of IVIFVs 9.3.2 Comparison with Existing Ranking Methods of IVIFVs 9.3.2 Comparison with Existing Ranking Methods of IVIFVs 9.3.2 Comparison with Existing Ranking Methods of IVIFVs 9.4 Analyses of Group Consensus in GDM 9.4.1 Problem Description for GDM with IVIFPRs 9.4.2 Group Consensus Analysis of GDM 9.4.2 Group Consensus Analysis of GDM 9.4.2 Group Consensus Analysis of GDM 9.4.3 An Iteration Algorithm in Group Consensus Improving Process 9.4.3 An Iteration Algorithm in Group Consensus Improving Process 9.4.3 An Iteration Algorithm in Group Consensus Improving Process 9.4.3 An Iteration Algorithm in Group Consensus Improving Process 9.4.3 An Iteration Algorithm in Group Consensus Improving Process 9.4.4 Statistical Comparative Study on Group Consensus 9.5 Multiplicative Consistency of IVIFPR 9.5.1 Multiplicative Consistency Concept of IVIFPR 9.5.1 Multiplicative Consistency Concept of IVIFPR 9.5.1 Multiplicative Consistency Concept of IVIFPR 9.5.2 Determine the Priority Weights from an IVIFPR 9.6 Method for GDM with IVIFPRs 9.6.1 Determination of Expert Weights Based on the Markov Model 9.6.1 Determination of Expert Weights Based on the Markov Model 9.6.2 Method for GDM with IVIFPRs 9.7 Two Case Studies 9.7.1 Case 1: An Example of a Virtual Enterprise Partner Selection 9.7.1.1 A Practical Example of a Virtual Enterprise Partner Selection 9.7.1.2 Comparative Analyses and Spearman’s Rank-Correlation Test 9.7.1.3 Fitted Error Analysis of the Obtained Results 9.7.2 Case 2: A Practical Example of an Enterprise Resource Planningsystem Selection 9.7.2.1 A Practical Example of an Enterprise Resource Planning System Selection 9.7.2.2 Comparative Analysis with the Method of Liao et al 9.8 Conclusions Appendix 1 Appendix 2 References