دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Frank Chang (editor)
سری: River Publishers series in optics and photonics
ISBN (شابک) : 9788793609228, 8793609221
ناشر:
سال نشر: 2018
تعداد صفحات: 760
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 136 مگابایت
در صورت تبدیل فایل کتاب Datacenter connectivity technologies : principles and practice به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فن آوری های اتصال مرکز داده: اصول و عمل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در سالهای اخیر، سرمایهگذاریهای شرکتهای ابری در مراکز داده بزرگ و زیرساختهای شبکه مرتبط، بخش بسیار فعال و پویا را در بازار قطعات و ماژولهای نوری ایجاد کرده است. فناوریهای اتصال نوری با سرعت بالا نقش مهمی در رشد مراکز داده بزرگ ایفا میکنند که شبکهها را با حجم بیسابقهای از ترافیک داده پر میکنند. فناوریهای اتصال مرکز داده: اصول و تمرین نگاهی جامع و عمیق به توسعه فناوریهای مختلف اتصال نوری که بر ساخت مراکز داده تأثیر میگذارند، ارائه میکند. این فناوریها از اتصال کوتاه برد، تا 100 متر با پیوندهای فیبر چند حالته (MMF) در داخل مراکز داده تا مسافتهای طولانی صدها کیلومتر با پیوندهای فیبر تک حالته (SMF) بین مراکز داده را شامل میشود. این کتاب اولین کتاب در نوع خود است که به فناوریهای پیشرفته مختلف متصل به مراکز داده میپردازد. مجموعه ای از دستاوردها و آخرین پیشرفت ها از کارشناسان مشهور صنعت و محققان دانشگاهی فعال در این زمینه است. موضوعات فنی مورد بررسی در این کتاب عبارتند از: الزامات مرکز داده بزرگ VCSELها لیزرهای مدوله شده مستقیماً مدوله شده لیزرهای مدوله شده با امواج الکترومغناطیس مدولاسیون دامنه پالس (PAM) مدولاسیون گسسته چند تنی (DMT) انتقال دودویی نوری فیبرهای نوری و اتصال دهنده های نوری بسته بندی فیبرهای نوری و کانکتورها اندازه گیری و مدولاسیون پیشرفته فرمتها شبکههای منسجم نوری، طراحی و بستهبندی آی سی با سرعت بالا
In recent years, investments by cloud companies in mega data centers and associated network infrastructure has created a very active and dynamic segment in the optical components and modules market. Optical interconnect technologies at high speed play a critical role for the growth of mega data centers, which flood the networks with unprecedented amount of data traffic. Datacenter Connectivity Technologies: Principles and Practice provides a comprehensive and in-depth look at the development of various optical connectivity technologies which are making an impact on the building of data centers. The technologies span from short range connectivity, as low as 100 meters with multi-mode fiber (MMF) links inside data centers, to long distances of hundreds of kilometers with single-mode fiber (SMF) links between data centers. This book is the first of its kind to address various advanced technologies connecting data centers. It represents a collection of achievements and the latest developments from well-known industry experts and academic researchers active in this field. Technical topics covered in this book include: Mega data center requirementsHigh volume VCSELsDirectly modulated lasersElectro-absorption modulated lasersPulse amplitude modulation (PAM)Discrete Multi-Tone modulation (DMT)Optical Duobinary TransmissionOptical fibers and connectorsMach-zenhder modulatorsSilicon photonicsOptical waveguide devices and packagingTesting and measurementsAdvanced modulation formatsOptical coherent networksHigh-speed IC design & packaging
Front Cover Half Title Page RIVER PUBLISHERS SERIES IN OPTICS AND PHOTONICS Title Page Copyright page Contents Preface Acknowledgements List of Contributors List of Figures List of Tables List of Abbreviations Chapter 1 - Optical Interconnect Technologies for Datacenter Networks 1.1 Introduction 1.2 Intra-datacenter Interconnects 1.2.1 40G Optical Interconnect Technologies 1.2.2 100G Optical Interconnect Technologies 1.2.3 400G and Beyond Optical Interconnect Technologies 1.3 Inter-datacenter Interconnects 1.3.1 Inter-datacenter Interconnects in Metro Networks 1.3.2 Inter-datacenter Interconnects in WANs 1.4 Summary References Chapter 2 - Vertical Cavity Surface Emitting Lasers 2.1 Introduction 2.2 Technology Fundamentals 2.3 VCSEL Device Structure 2.4 VCSEL Material Growth 2.5 VCSEL Fabrication Process 2.6 Conclusion References Chapter 3 - Directly Modulated Laser Technology: Past, Present, and Future 3.1 Introduction 3.2 Intuitive Picture of the Dynamics of Directly Modulated Lasers 3.3 Progress of High-Speed FP and DFB Lasers 3.3.1 1.55 mm DML 3.3.2 1.3 mm DML 3.3.3 Short-Wavelength DML 3.4 Reach Extension of DML for PON and Metro Applications 3.4.1 Principle of Reach Extension of DML by Tailoring Chirp 3.4.2 10 Git/s Transmission Performance of Adiabatic- and Transient-Chirp Dominant DMLs 3.4.3 Gain Compression Phenomena 3.4.4 Experimental S21 Response and Transmission Performance of a Highly-Damped DBR Laser 3.4.5 Thermal Wavelength Drift Stabilization for the Burst-Mode NGPON2 Application 3.5 Chirp Managed Laser (CML) 3.5.1 Principles of CML 3.5.2 Experimental Demonstrations of CML 3.6 New Era of High-Speed DML Toward 100-GHz Bandwidth 3.6.1 Detuned-Loading Effect 3.6.2 S21 High-Pass Filter Effect Due to In-Cavity FM-AM Conversion by the DBR Mirror 3.6.3 Photon-Photon Resonance Effect 3.6.4 Co-Existence of Photon-Photon Resonance and Detuned-Loading Effects 3.6.5 55-GHz Bandwidth Short-Cavity DR Laser and 56 Gbaud PAM4 Generation 3.7 Conclusions Acknowledgements References Chapter 4 - PAM4 Modulation Using Electro-absorption Modulated Lasers 4.1 Introduction 4.2 General PAM4 Optical Transceiver and Link Considerations 4.2.1 PAM4 Signal and Optical Link Characteristics 4.2.2 EML Biasing and Nonlinear Equalization 4.2.3 Forward Error Correction (FEC) and Data Rates for PAM4 Links 4.2.4 Sampling Rate and Analog Bandwidth 4.2.5 FFE and DFE Equalization 4.3 28 Gbaud PAM4 Transmission [16, 17] 4.4 56 Gbaud PAM4 Transmission over 2 km Experiment 4.5 40 km PAM4 Transmission 4.5.1 Avalanche Photodiode (APD) 4.5.2 Gain Clamped Semiconductor Optical Amplifier (GC-SOA) 4.6 100 km PAM4 Transmission 4.6.1 Experimental Setup 4.6.2 Single Channel Characteristics 4.6.3 Effect of Fiber Nonlinearities 4.7 Multipath Interference [34, 35] 4.7.1 Experimental Demonstration of the Upper Bound MPI Scenario 4.7.3 MPI Experiment with Multiple Connectors 4.7.2 Time-Domain Mixing Monte Carlo Simulation 4.8 Summary References Chapter 5 - Optical Fiber for Datacenter Connectivity 5.1 Introduction 5.2 Fiber Type for Datacenters 5.2.1 Multimode Fiber Types for Datacenters 5.2.2 Single-mode Fiber Types for Datacenters 5.2.3 Optical Cabling for Datacenters 5.2.4 Multicore (MCF) and Few-Mode Fiber (FMF) for SDM 5.3 Waveguide Design, Modal Structure, and Time Response of SMF and MMF for Datacenters 5.3.1 Fundamentals of Waveguide Design and Mode Structures of SMF and MMF 5.3.2 Fundamentals of the Time Response of Optical Fiber 5.4 Multimode Optical Fiber for High-Speed Short-Reach Interconnect 5.4.1 Laser-optimized MMF (OM3 and OM4) 5.4.1.1 What is Laser-optimized MMF? 5.4.1.2 Differential Modal Delay (DMD) 5.4.1.3 Bandwidth of MMF Links 5.4.1.3.1 Overfilled modal bandwidth 5.4.1.3.2 Effective modal bandwidth 5.4.1.3.3 Chromatic bandwidth 5.4.1.3.4 True bandwidth of a short-reach interconnect system channel 5.4.2 Bend-optimized OM3/OM4 and Overfilled Effective Modal Bandwidth 5.4.3 Wideband MMF (OM5) 5.5 High-Speed VCSEL-MMF Short-Reach Optical Interconnect System 5.5.1 System Evaluation Methodology 5.5.2 High-Speed VCSEL-MMF System Transmission Validation 5.5.2.1 10GBASE-SR transmission over OM3 and OM4 MMF 5.5.2.2 40GBASE-eSR4 and 100G eSR4 extended reach demonstration over OM4 MMF 5.5.2.3 40/100 Gbps SWDM over OM5 MMF 5.5.2.4 High-Speed PAM4 SWDM transmission over OM5 MMF 5.6 Datacom Transmission over Single-Mode Optical Fiber 5.7 Conclusions Acknowledgement References Chapter 6 - PAM4 Signaling and its Applications 6.1 Introduction 6.2 A Brief History 6.3 PAM4 IC Implementation Challenges 6.3.1 PAM4 Transmit Architectures 6.3.2 PAM4 Receive Architectures 6.4 PAM4 SMF Performance 6.4.1 Experimental Setups 6.4.2 1 40G 10 km Transmission 6.4.3 2 100G 10 km and 40 km Transmissions 6.4.4 Technical Options for 200/400G Over SMF 6.5 PAM4 MMF Performance 6.5.1 Experimental Setups 6.5.2 1λ 40G Transmission Over 550m OM4 6.5.3 2 100/200 Gbps 300m Transmission 6.5.4 Technical Options for 200/400G Over VCSEL/MMF 6.6 PAM4 for OSNR-limited Systems at 1550 nm 6.6.1 Experimental Setups 6.6.2 OSNR and Dispersion Performance 6.7 PAM4 Compliance Tests 6.7.1 Transmitter Dispersion Eye Closure for PAM4 (TDECQ) 6.7.2 Optical Stressed Receiver Sensitivity 6.8 Single Lambda PAM4 6.9 Summary and Outlook Acknowledgements References Chapter 7 - Discrete Multitone for Metro Datacenter Interconnect 7.1 Introduction 7.2 A Brief History of DMT 7.3 How DMT Works 7.3.1 FFT/IFFT 7.3.2 Cyclic Prefix 7.3.3 Loading Algorithm 7.3.4 PAPR Suppression 7.3.5 Synchronization 7.3.6 Channel Equalization 7.4 Advanced DMT Techniques for Metro DCI 7.4.1 The Principle of CD-induced Power Fading 7.4.2 Generations of SSB-DMT 7.4.2.1 Optical filter-based SSB-DMT 7.4.2.2 E/O modulator-based SSB-DMT 7.4.2.2.1 DD-MZM-based SSB-DMT 7.4.2.2.2 IQ-MZM-based SSB-DMT 7.4.3 Generation of EDC-DSB-DMT 7.4.4 Generation of Twin-SSB-DMT 7.4.5 Generation of SSBI-free Twin-SSB-DMT 7.5 Summary References Chapter 8 - A Duobinary Approach Toward High-speed Short-reach Optical Interconnects 8.1 Introduction 8.2 Three-Level Electrical Duobinary Modulation 8.2.1 Nyquist Frequency 8.2.2 Power Spectral Density 8.2.3 Vertical and Horizontal Eye Openings 8.3 100-Gbps EDB/NRZ Transmitter and Receiver Chipset 8.4 EDB/NRZ Transmission with DFB-TWEAM 8.5 NRZ-OOK Transmission with GeSi EAM 8.6 SM LW-VCSEL EDB Links 8.7 Conclusion Acknowledgment References Chapter 9 - LiNbO3 Mach-Zehnder Modulator 9.1 Introduction 9.2 Physical Properties of LN (LiNbO3) Crystal 9.3 Low-loss Ti-diffused Waveguides on LN Since 1974 9.4 Mach–Zehnder (MZ) Guided-wave Circuit with Y-branches on LN 9.5 Velocity Matching Between Lightwaveand Electric Signal 9.6 Stabilization of LN-MZM Operation 9.7 External Modulation by LN-MZM Accompanied with EDFA Repeating 9.9 Current Status of LN-MZM and Future Potential 9.8 Vector Modulation with LN-MZM for Digital Coherent Optical Communications 9.10 Summary References Chapter 10 - Silicon Photonics Based PAM4, DWDMDatacenter Interconnects 10.2 Datacenter Interconnect–Edge 10.1 Introduction 10.3 Switch Pluggable 100Gbit/s DWDM Module 10.4 PAM4 DSP ASIC 10.5 Silicon Photonics 10.6 Module and Transmission Performance 10.7 Live Datacenter Deployments 10.8 Evolution to Switch Pluggable 400-Gbit/s DWDM Module 10.9 Conclusion Acknowledgments References Chapter 11 - Low-Loss Photonic Integration: Applications in Datacenters 11.1 Datacenters and Photonic Integrated Circuits 11.2 InP, Si, and Si3N4 Waveguide Platforms 11.3 The Ultra-Low Loss Si3N4/SiO2 Platform 11.4 Integration Building Blocks on the ULL Silicon Nitride Platform 11.4.1 Available PIC Platforms 11.5 Ultra-Low Loss PIC Components for Datacom 11.5.1 Low-Loss PICs and Optical Delays 11.5.2 Integrated Dispersion Compensation 11.5.2.1 Design of an Integrated Dispersion Compensator 11.5.2.2 Demonstration of 40 Gbps NRZ-OOK Dispersion Compensation 11.5.2.3 Demonstration of 40 Gbps PAM-4 Dispersion Compensation 11.5.3 Grating Filters 11.5.4 Ring Resonator Filters 11.5.5 High-Extinction Filters 11.5.6 C-band Lasers on the Si3N4 Platform 11.6 Silicon-Nitride Waveguide Design 11.7 Summary Acknowledgements References Chapter 12 - Advanced Optical Measurementsfor Data Centers 12.1 Introduction 12.2 Polarization Related Tests 12.2.1 Polarization Mode Dispersion (PMD) Measurement 12.2.2 Polarization Dependent Loss (PDL) Measurement 12.2.3 PDR Measurement of Receivers 12.2.4 PDL Measurement of Fiber Optic Link 12.2.5 Measuring In-band OSNR by DOP Measurement 12.2.6 Polarization Emulation for Non-coherent and Coherent Systems 12.3 Optical Signal-to-Noise Ratio Measurement 12.3.1 Measuring OSNR with an OSA 12.4 Characterization of Optical Vector-Modulated Signals 12.4.1 Constellation and IQ Diagrams for Vector-Modulated Signal 12.4.2 Definitions of EVM, RMS-EVM and TR-EVM 12.4.3 Relationships between EVMRMS, Q-Factor, OSNR and BER 12.4.4 Characterization of Transmitter Impairments 12.5 Conclusion Acknowledgements References Chapter 13 - Digital Signal Processing for Short-reach Optical Communications 13.1 Introduction 13.1.1 Challenges for Short-reach Optical Systems 13.1.1.1 Cost 13.1.1.2 Form factor 13.1.1.3 Latency 13.1.2 Different Types of Short-reach Systems 13.1.2.1 Server-to-server or Intra-data-center links 13.1.2.2 Inter data-center links 13.1.2.3 Extended Reach Inter-data-center, Access,and Metro Links 13.2 Modulation Formats for Short-reach Systems 13.2.1 Pulse Amplitude Modulation (PAM) 13.2.2 Carry-less Amplitude and Phase (CAP) Modulation 13.2.3 Discrete Multi-tone (DMT) Modulation 13.2.4 Performance Comparison of Modulation Formats 13.2.5 Complexity Comparison of Modulation Formats 13.2.6 Recent Experiment on High-Speed Short-reachTransmission SystemsBased on those high-order modulatio 13.3 Digital Signal Processing for Short-reach Systems 13.3.1 Feed-forward Equalizer (FFE) 13.3.2 Decision Feedback Equalizer (DFE) 13.3.3 Direct Detection Faster-than Nyquist (DD-FTN) 13.3.4 Volterra-series Based Nonlinear Equalizer (VNLE) 13.4 Polarization Division Multiplexed Transmissionfor Short-reach Systems 13.4.1 Stokes-vector Direct Detection (SV-DD) Receiver 13.4.2 2-Dimensional (2D) PDM-DD System Basedon SV-DD Receiver 13.4.3 3-Dimensional (3D) PDM-DD System Based on SV-DD Receiver 13.5 Conclusion Acknowledgments References Chapter 14 - Multi-dimensional Polarization Modulation 14.1 Optical Detection with Polarization Diversity 14.1.1 The Need of Polarization-Diversity Detection 14.1.2 Automatic Polarization Control 14.1.3 Polarization-Diversity Detection in Jones Space 14.1.4 The Barrier of Self-Polarization Diversity 14.1.5 Polarization-Diversity Detection in Stokes Space 14.2 Direct Modulation with Coherent Receiver 14.2.1 The Intensity-only POL-MUX-DM Coherent System 14.2.2 Complex DM Model 14.2.3 100-Gb/s CDM Transmission Over 1600-km SMF 14.3 Polarization Modulation in Stokes Space 14.3.1 Stokes-space Modulation 14.3.2 Universal MIMO Equalization in Stokes Space 14.3.3 Self-coherent SSM 14.3.4 Multi-Dimensional IM in Stokes Space 14.4 Noncoherent Polarization Multiplexing 14.4.1 Degree of Coherence in POL-MUX Transmitter 14.4.2 Noncoherent POL-MUX Schemes 14.5 Summary References Chapter 15 - High-speed Flexible Coherent Optical Transport Network 15.1 Introduction 15.2 Why Optical Coherent Transmission? 15.3 Optical Transport Network with Coherent Transmission 15.4 What’s Next for Optical Transport Network? 15.5 Coherent Transport Technology Development by Network Operators 15.6 Datacenter Connections and Coherent Transport Networks 15.7 Conclusions References Chapter 16 - Ultra-low-power SiGe Driver-IC for High-speed Electro-absorption Modulated DFB Lasers 16.1 Introduction 16.2 IC Design for Low Power Consumption 16.2.1 Design Requirements 16.2.2 IC Architectures for Low Power Consumption 16.2.3 Driver-IC Design 16.2.3.1 Unit-cell design 16.2.3.2 Circuit Simulations 16.3 Co-design and Electro-optical Simulation 16.3.1 Low-power CoC Design 16.3.2 Co-simulation of Driver-IC with EML 16.3.2.1 Electrical Time-domain Simulations 16.3.2.2 Electro-optical Time-domain Simulations 16.4 Measurements 16.4.1 EO Measurements 16.4.2 Transmission Experiments [7] 16.5 Conclusion and Perspective Acknowledgments References Index About the Editor Untitled