دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: برنامه نويسي ویرایش: 1 نویسندگان: Jacqueline Kazil. Katharine Jarmul سری: ISBN (شابک) : 9781491948811 ناشر: O’Reilly Media سال نشر: 2016 تعداد صفحات: 0 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 مگابایت
کلمات کلیدی مربوط به کتاب ویرایش داده ها با پایتون: نکات و ابزارهایی برای آسانتر کردن زندگی شما: طراحی مدلسازی داده پایگاههای داده رایانههای بزرگ فناوری کاوی برنامهنویسی APIها محیطهای عملیاتی الگوریتمهای پلتفرم Apple Cross توسعه گرافیک بازی کاربردی چند رسانهای زبانهای ابتدایی مقدماتی ابزارهای نرمافزارهای موبایل مایکروسافت نرمافزارهای موازی تست مهندسی وب پایتون مرجع سالنامهها سالنامهها Atlases Maps Careers Consult Catalogies نقل قول شجره نامه مطالعات خارجی آداب زبان دوم
در صورت تبدیل فایل کتاب Data Wrangling with Python: Tips and Tools to Make Your Life Easier به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ویرایش داده ها با پایتون: نکات و ابزارهایی برای آسانتر کردن زندگی شما نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کند و کاو در داده ها نباید دردناک باشد. با Data Wrangling با استفاده از Python، یاد خواهید گرفت که چگونه داده ها را تمیز و تجزیه و تحلیل کنید، داستان های قانع کننده ایجاد کنید و آن داده ها را در صورت لزوم مقیاس دهید. اکتشافات شگفت انگیزی در مجموعه داده ها و داستان های بی ادعا وجود دارد که باید گفت. لازم نیست برنامه نویس باشید تا به آنها بگویید. آنچه شما نیاز دارید درک زمینه داده ها و دانستن تعدادی از تکنیک های موجود در این کتاب است. از طریق مجموعهای از مثالها که در سراسر کتاب پیچیدگی بیشتری پیدا میکنند، به اندازه کافی پایتون را یاد خواهید گرفت که میتوانید با دادههای خود درگیر شوید.
Digging into data does not have to be painful. With Data Wrangling Using Python, you'll learn how to clean and analyze data, create compelling stories, and scale that data as necessary. There are awesome discoveries to be made in unassuming datasets and stories to be told. You don’t have to be a programmer to tell them. What you need is to understand the context of the data and to know a few of the techniques found in this book. You'll learn enough Python to be empowered to engage with your data, through a series of examples that grow in complexity throughout the book.
Copyright Table of Contents Preface Who Should Read This Book Who Should Not Read This Book How This Book Is Organized What Is Data Wrangling? What to Do If You Get Stuck Conventions Used in This Book Using Code Examples Safari® Books Online How to Contact Us Acknowledgments Chapter 1. Introduction to Python Why Python Getting Started with Python Which Python Version Setting Up Python on Your Machine Test Driving Python Install pip Install a Code Editor Optional: Install IPython Summary Chapter 2. Python Basics Basic Data Types Strings Integers and Floats Data Containers Variables Lists Dictionaries What Can the Various Data Types Do? String Methods: Things Strings Can Do Numerical Methods: Things Numbers Can Do List Methods: Things Lists Can Do Dictionary Methods: Things Dictionaries Can Do Helpful Tools: type, dir, and help type dir help Putting It All Together What Does It All Mean? Summary Chapter 3. Data Meant to Be Read by Machines CSV Data How to Import CSV Data Saving the Code to a File; Running from Command Line JSON Data How to Import JSON Data XML Data How to Import XML Data Summary Chapter 4. Working with Excel Files Installing Python Packages Parsing Excel Files Getting Started with Parsing Summary Chapter 5. PDFs and Problem Solving in Python Avoid Using PDFs! Programmatic Approaches to PDF Parsing Opening and Reading Using slate Converting PDF to Text Parsing PDFs Using pdfminer Learning How to Solve Problems Exercise: Use Table Extraction, Try a Different Library Exercise: Clean the Data Manually Exercise: Try Another Tool Uncommon File Types Summary Chapter 6. Acquiring and Storing Data Not All Data Is Created Equal Fact Checking Readability, Cleanliness, and Longevity Where to Find Data Using a Telephone US Government Data Government and Civic Open Data Worldwide Organization and Non-Government Organization (NGO) Data Education and University Data Medical and Scientific Data Crowdsourced Data and APIs Case Studies: Example Data Investigation Ebola Crisis Train Safety Football Salaries Child Labor Storing Your Data: When, Why, and How? Databases: A Brief Introduction Relational Databases: MySQL and PostgreSQL Non-Relational Databases: NoSQL Setting Up Your Local Database with Python When to Use a Simple File Cloud-Storage and Python Local Storage and Python Alternative Data Storage Summary Chapter 7. Data Cleanup: Investigation, Matching, and Formatting Why Clean Data? Data Cleanup Basics Identifying Values for Data Cleanup Formatting Data Finding Outliers and Bad Data Finding Duplicates Fuzzy Matching RegEx Matching What to Do with Duplicate Records Summary Chapter 8. Data Cleanup: Standardizing and Scripting Normalizing and Standardizing Your Data Saving Your Data Determining What Data Cleanup Is Right for Your Project Scripting Your Cleanup Testing with New Data Summary Chapter 9. Data Exploration and Analysis Exploring Your Data Importing Data Exploring Table Functions Joining Numerous Datasets Identifying Correlations Identifying Outliers Creating Groupings Further Exploration Analyzing Your Data Separating and Focusing Your Data What Is Your Data Saying? Drawing Conclusions Documenting Your Conclusions Summary Chapter 10. Presenting Your Data Avoiding Storytelling Pitfalls How Will You Tell the Story? Know Your Audience Visualizing Your Data Charts Time-Related Data Maps Interactives Words Images, Video, and Illustrations Presentation Tools Publishing Your Data Using Available Sites Open Source Platforms: Starting a New Site Jupyter (Formerly Known as IPython Notebooks) Summary Chapter 11. Web Scraping: Acquiring and Storing Data from the Web What to Scrape and How Analyzing a Web Page Inspection: Markup Structure Network/Timeline: How the Page Loads Console: Interacting with JavaScript In-Depth Analysis of a Page Getting Pages: How to Request on the Internet Reading a Web Page with Beautiful Soup Reading a Web Page with LXML A Case for XPath Summary Chapter 12. Advanced Web Scraping: Screen Scrapers and Spiders Browser-Based Parsing Screen Reading with Selenium Screen Reading with Ghost.Py Spidering the Web Building a Spider with Scrapy Crawling Whole Websites with Scrapy Networks: How the Internet Works and Why It’s Breaking Your Script The Changing Web (or Why Your Script Broke) A (Few) Word(s) of Caution Summary Chapter 13. APIs API Features REST Versus Streaming APIs Rate Limits Tiered Data Volumes API Keys and Tokens A Simple Data Pull from Twitter’s REST API Advanced Data Collection from Twitter’s REST API Advanced Data Collection from Twitter’s Streaming API Summary Chapter 14. Automation and Scaling Why Automate? Steps to Automate What Could Go Wrong? Where to Automate Special Tools for Automation Using Local Files, argv, and Config Files Using the Cloud for Data Processing Using Parallel Processing Using Distributed Processing Simple Automation CronJobs Web Interfaces Jupyter Notebooks Large-Scale Automation Celery: Queue-Based Automation Ansible: Operations Automation Monitoring Your Automation Python Logging Adding Automated Messaging Uploading and Other Reporting Logging and Monitoring as a Service No System Is Foolproof Summary Chapter 15. Conclusion Duties of a Data Wrangler Beyond Data Wrangling Become a Better Data Analyst Become a Better Developer Become a Better Visual Storyteller Become a Better Systems Architect Where Do You Go from Here? Appendix A. Comparison of Languages Mentioned C, C++, and Java Versus Python R or MATLAB Versus Python HTML Versus Python JavaScript Versus Python Node.js Versus Python Ruby and Ruby on Rails Versus Python Appendix B. Python Resources for Beginners Online Resources In-Person Groups Appendix C. Learning the Command Line Bash Navigation Modifying Files Executing Files Searching with the Command Line More Resources Windows CMD/Power Shell Navigation Modifying Files Executing Files Searching with the Command Line More Resources Appendix D. Advanced Python Setup Step 1: Install GCC Step 2: (Mac Only) Install Homebrew Step 3: (Mac Only) Tell Your System Where to Find Homebrew Step 4: Install Python 2.7 Step 5: Install virtualenv (Windows, Mac, Linux) Step 6: Set Up a New Directory Step 7: Install virtualenvwrapper Installing virtualenvwrapper (Mac and Linux) Installing virtualenvwrapper-win (Windows) Testing Your Virtual Environment (Windows, Mac, Linux) Learning About Our New Environment (Windows, Mac, Linux) Advanced Setup Review Appendix E. Python Gotchas Hail the Whitespace The Dreaded GIL = Versus == Versus is, and When to Just Copy Default Function Arguments Python Scope and Built-Ins: The Importance of Variable Names Defining Objects Versus Modifying Objects Changing Immutable Objects Type Checking Catching Multiple Exceptions The Power of Debugging Appendix F. IPython Hints Why Use IPython? Getting Started with IPython Magic Functions Final Thoughts: A Simpler Terminal Appendix G. Using Amazon Web Services Spinning Up an AWS Server AWS Step 1: Choose an Amazon Machine Image (AMI) AWS Step 2: Choose an Instance Type AWS Step 7: Review Instance Launch AWS Extra Question: Select an Existing Key Pair or Create a New One Logging into an AWS Server Get the Public DNS Name of the Instance Prepare Your Private Key Log into Your Server Summary Index About the Authors