دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: David Mathias
سری:
ISBN (شابک) : 9781683926511
ناشر: Mercury Learning and Information
سال نشر: 2023
تعداد صفحات: 207
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 15 Mb
در صورت تبدیل فایل کتاب Data Storytelling and Translation: Bridging the Gap Between Numbers and Narratives به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب داستان سرایی و ترجمه داده ها: پر کردن شکاف بین اعداد و روایت ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Title Copyrightpage Contents Prologue Acknowledgments Chapter 1 The Age of the Data Translator Curiosity Empathy Trustworthiness Who is This Book For? How This Book is Laid Out and What to Expect Chapter 2 All Decisions Start With People Start Understanding People by Looking Inward First Understanding Incentives and Biases Understanding, Engaging, and Communicatin With Your Customer Sample Survey from Talent Management to Hiring Manager Customer References Chapter 3 Start With Good Questions and Great Listening The Importance of Good Questions The Definition of a Good Question How to Ask Good Questions Asking the Right Customer Create the Right Setting Asking in the Right Time and Place Defuse With Your Questions Body Language and Tone Listening: Being Heard by Being a Great Listener Focus Understand Respond References Chapter 4 Being Fluent in the Language of Data Everything Starts With Understanding the Data Structured versus Unstructured Data Categorical versus Numerical Data Clean versus Messy Data Statistics Is the Language of Understanding Data Descriptive Statistics Central Tendency Variability Correlation Inferential Statistics The Superpower of Analytics and Data Science Types of Analytics Foundational Analytics Concepts Artificial Intelligence Machine Learning Specific versus General Artificial Intelligence Classification versus Regression Supervised versus Unsupervised Learning It’s All About the Data Data and Analytics as Services The Tension Between Transparency and Performance Perpetual Model Bias References Chapter 5 Identify, Understand, and Frame Problems Identifying Problems Means Understanding Pain Problem-Ask-Value Framework Understand the Problem Understand the Question Understand the Value Reframing Problems References Chapter 6 Simplifying Insights Through Metrics and Objectives What Is the Purpose? Communicate Priorities Align People and Processes Show Progress Motivate Behavior Define Expectations Reduce Uncertainty Leading and Lagging Metrics Efficiency, Effectiveness, and Outcome Metrics Upward and Downward Metrics Who is the Audience? Sales Activity Metric Example Customer Experience Metric Example How Do You Communicate? Initial Communication Ongoing Communication Who Is the Target? Accuracy versus Precision Operationalizing Metrics References Chapter 7 Painting Your Data Story Data Story Canvas Introduction Data Story Topic Delivering Your Data Story The Audience The Existing Narrative What They Need to Know The Hook Keep: Holding Their Attention Compel: The Call to Action The Data Source The Tradeoffs Your Confidence Data Story Canvas Example Chapter 8 everaging Visuals to Share Insights and Compel Action The Purpose of Data Visualization Exploratory Data Visualization Data Visualization as Storytelling Principles of Good Data Visualization Picking the Right Chart Tables Are Not Evil Harnessing the Power of Size, Angle, and Position Size Angle Position The Power of Color Color Usage Context Correct Color Color Consistency Number of Different Colors Intensity of Color Categorical versus Continuous Color Colorblind-Friendly Text in a Data Visualization Summaries Titles Legends Axis Labels Data Labels Annotations Consistency Format Source Trends and References Don’t Overdo It Gestalt Principles Moving Beyond Design and Communicating Data Visualizations Prioritize the Meaning Ask Questions to Engage Get Second and Third Opinions Avoid Check-the-Box Visualizations Layer Your Visualization Show Your Work and Get Detailed Build Trust Through Data Visualization References Chapter 9 Leveraging Dashboards in Your Communication Dashboard Best Practices Provide the What, Why, and Now What Be Consistent Follow the Z-Pattern Balance Interactivity Don’t Shy Away From Text Make Sure the Data Source is Obvious Defaults Matter Dashboard Lifecycle Beginning Middle End Dashboards and Storytelling References Chapter 10 Communicating Your Data Story An Introduction to the Data Story Checklist Be Authentically You Test and Verify Be Vulnerable Eliminate Roadblocks in Advance Engage Often and Early Be Transparent and Ethical Be Confident and Humble Be Prepared to Improvise Lead With a Story Backed by Data and Visuals Consider the Right Person Data Story Checklist Developing Your Communication Skills Meetup Groups / Professional Association Contributing Author Improvisational Theater Toastmasters International Conclusion References Epilogue Top 20 Podcasts for Data Translators Top 20 Books for Data Translators Index