دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Qurban A Memon (editor). Shakeel Ahmed Khoja (editor)
سری:
ISBN (شابک) : 036720861X, 9780367208615
ناشر: CRC Press
سال نشر: 2019
تعداد صفحات: 345
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Data Science: Theory, Analysis and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علم داده: نظریه، تحلیل و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هدف این کتاب ارائه مجموعهای معتبر بینالمللی از روشها، فناوریها و کاربردهای تحقیقات علمی در حوزه علم داده است. این کتاب می تواند برای محققان، اساتید، دانشجویان پژوهشگر و متخصصان مفید باشد زیرا کار تحقیقاتی جدیدی را در مورد موضوعات چالش برانگیز در حوزه علوم داده گزارش می دهد. در این کتاب، برخی از فصل ها به سبک آموزشی در مورد الگوریتم های یادگیری ماشین، تجزیه و تحلیل داده ها، طراحی اطلاعات، اینفوگرافیک، برنامه های کاربردی مرتبط و غیره نوشته شده است. ساختار کتاب به شرح زیر است:
• قسمت اول: داده ها علم: تئوری، مفاهیم و الگوریتم ها
این بخش شامل پنج فصل در مورد نظریه علم داده، مفاهیم، تکنیک ها و الگوریتم ها است.
• بخش دوم: طراحی و تجزیه و تحلیل داده ها
این بخش شامل پنج فصل در طراحی و تجزیه و تحلیل داده ها است.
• بخش سوم: کاربردها و روندهای جدید در داده ها علم
این بخش شامل چهار فصل در مورد کاربردها و روندهای جدید در علم داده است.
The aim of this book is to provide an internationally respected collection of scientific research methods, technologies and applications in the area of data science. This book can prove useful to the researchers, professors, research students and practitioners as it reports novel research work on challenging topics in the area surrounding data science. In this book, some of the chapters are written in tutorial style concerning machine learning algorithms, data analysis, information design, infographics, relevant applications, etc. The book is structured as follows:
• Part I: Data Science: Theory, Concepts, and Algorithms
This part comprises five chapters on data Science theory, concepts, techniques and algorithms.
• Part II: Data Design and Analysis
This part comprises five chapters on data design and analysis.
• Part III: Applications and New Trends in Data Science
This part comprises four chapters on applications and new trends in data science.
Cover Half Title Title Page Copyright Page Dedication Contents Preface Editors Contributors PART I: Data Science: Theory, Concepts, and Algorithms Chapter 1 Framework for Visualization of GeoSpatial Query Processing by Integrating MongoDB with Spark 1.1 Introduction 1.1.1 Integration of Spark and MongoDB 1.2 Literature Survey 1.3 Proposed System 1.3.1 Methodology for Processing Spatial Queries 1.3.2 Spark Master-Slave Framework 1.3.3 Algorithms for Sharding 1.3.3.1 Algorithm for Range Sharding 1.3.3.2 Algorithms for Zone Sharding 1.3.4 Dataset and Statistics 1.4 Results and Performance Evaluation 1.5 Conclusion References Chapter 2 A Study on Metaheuristic-Based Neural Networks for Image Segmentation Purposes 2.1 Introduction 2.2 Supervised Image Segmentation 2.3 Literature Review 2.4 Artificial Neural Networks 2.5 Optimization 2.6 Metaheuristic Algorithms 2.6.1 Genetic Algorithm 2.6.2 Particle Swarm Optimization Algorithm 2.6.3 Imperialist Competitive Algorithm 2.7 Optimization of the Neural Networks Weights Using Optimization Algorithms 2.8 Experimental Setup and Method Analysis 2.9 Conclusions References Chapter 3 A Study and Analysis of a Feature Subset Selection Technique Using Penguin Search Optimization Algorithm 3.1 Introduction 3.2 Literature Review 3.3 Proposed Work 3.3.1 Pseudocode of the Proposed FS-PeSOA Algorithm 3.3.2 Discussion 3.3.2.1 Hunting Strategy of Penguins 3.3.2.2 Fitness Function Evaluation 3.3.2.3 Position Update Logic 3.3.2.4 Oxygen Update Logic 3.4 Result Analysis 3.5 Conclusions References Chapter 4 A Physical Design Strategy on a NoSQL DBMS 4.1 Introduction 4.2 Motivation Example 4.3 Neo4j 4.4 Design Guidelines 4.5 Physical Design 4.5.1 Query Rewriting Using Path Redundancy Pattern 4.5.2 Query Rewriting Using Minimal Query Pattern 4.5.3 Path Materialization 4.5.4 Index Creation 4.6 Experimental Study 4.6.1 Experimental Design 4.6.2 Impact of the Proposed Physical Design on Query Performance for a 1 GB Database 4.6.3 Impact of the Proposed Physical Design on Query Performance for a 10 GB Database 4.6.4 Impact of the Proposed Physical Design on Query Performance for a 100 GB Database 4.7 Related Work 4.8 Discussion 4.9 Future Research Directions 4.10 Conclusion References Chapter 5 Large-Scale Distributed Stream Data Collection Schemes 5.1 Introduction 5.2 Data Collection Scheme for Distributed TBPS 5.2.1 Assumed Environment 5.2.1.1 Assumed TBPS Architecture 5.2.1.2 Assumed Overlay for Distributed TBPS 5.2.2 Proposed Method 5.2.2.1 Methodology Principle 5.2.2.2 Collective Store and Forwarding 5.2.2.3 Adaptive Data Collection Tree 5.2.3 Evaluation 5.2.3.1 Simulation Parameters 5.2.3.2 Simulation Results 5.3 Data Collection Scheme Considering Phase Differences 5.3.1 Problems Addressed 5.3.1.1 Assumed Environment 5.3.1.2 Input Setting 5.3.1.3 Definition of a Load 5.3.2 Proposed Method 5.3.2.1 Skip Graphs 5.3.2.2 Phase Differences 5.3.3 Evaluation 5.3.3.1 Collection Target Nodes 5.3.3.2 Communication Loads and Hops 5.4 Discussion 5.5 Related Work 5.6 Conclusion Acknowledgements References PART II: Data Design and Analysis Chapter 6 Big Data Analysis and Management in Healthcare 6.1 Introduction 6.2 Preliminary Studies 6.3 Healthcare Data 6.4 Need of Big Data Analytics in Healthcare 6.5 Challenges in Big Data Analysis in Healthcare 6.5.1 Capture 6.5.2 Cleaning 6.5.3 Storage 6.5.4 Security 6.5.5 Stewardship 6.5.6 Querying 6.5.7 Reporting 6.5.8 Visualization 6.5.9 Updating 6.5.10 Sharing 6.6 Collection of Healthcare Data 6.6.1 Importance in Healthcare Data Collection 6.6.2 Complications and Clarifications of Healthcare Data Collection 6.6.3 Current Data Collection Methods 6.6.4 Advanced Data Collection Tools 6.6.5 Healthcare Data Standards 6.6.6 Inferences of Patient Data Collection in Healthcare 6.7 Analysis of Healthcare Data 6.8 Healthcare Data Management 6.8.1 Big Data and Care Management 6.8.2 Advantages of Healthcare Data Management 6.9 Big Data in Healthcare 6.9.1 Big Data and IoT 6.9.2 Patient Prophecies for Upgraded Staffing 6.9.3 Electronic Health Records 6.9.4 Real-Time Warning 6.9.5 Augmenting Patient Engagement 6.9.6 Using Health Data for Informed Strategic Planning 6.9.7 Extrapolative Analytics in Healthcare 6.9.8 Diminish Fraud and Enrich Security 6.9.9 Telemedicine 6.9.10 Assimilating Big Data per Medical Imaging 6.9.11 A Method to Avert Pointless ER (Emergency Room) Visits 6.10 Future for Big Data in Healthcare 6.11 Conclusion References Chapter 7 Healthcare Analytics: A Case Study Approach Using the Framingham Heart Study 7.1 Introduction and Background to the Case Study: Framingham Heart Study 7.2 Literature Review 7.3 Introduction to the Data Analytics Framework 7.3.1 Step 1. Defining the Healthcare Problem 7.3.2 Step 2. Explore the Healthcare Data 7.3.3 Step 3. Predict What Is Likely to Happen; or Perform Classification Analysis 7.3.4 Step 4. Check the Modeling Results 7.3.5 Step 5. Optimize (Find the Best Solution) 7.3.6 Step 6. Derive a Clinical Strategy for Patient Care and Measure the Outcome 7.3.7 Step 7. Update the CDS System 7.4 Data Exploration and Understanding of the Healthcare Problem 7.5 Machine-Learning Model Application 7.6 Evaluation of the Machine-Learning Model Results 7.7 Conclusion 7.8 Future Direction Acknowledgements References Chapter 8 Bioinformatics Analysis of Dysfunctional (Mutated) Proteins of Cardiac Ion Channels Underlying the Brugada Syndrome 8.1 Introduction 8.2 Results 8.2.1 Brief Description of Unique BrS-Related Proteins 8.2.2 PIM-Based Analysis of the Unique BrS-Related Proteins 8.2.3 Intrinsic Disorder Analysis of the BrS-Related Proteins 8.2.4 Kolmogorov–Smirnov Test 8.3 Discussion 8.4 Materials and Methods 8.4.1 Evaluation of Polar Profile 8.4.1.1 Weighting of Polar Profiles 8.4.1.2 Comparison of Polar Profiles 8.4.1.3 Graphics of Polar Profiles 8.4.2 Evaluation of Intrinsic Disorder Predisposition 8.4.3 Data Files 8.4.4 Kolmogorov–Smirnov Test 8.4.5 Test Plan 8.4.5.1 Polar Profile 8.5 Conclusions References Chapter 9 Discrimination of Healthy Skin, Superficial Epidermal Burns, and Full-Thickness Burns from 2D-Colored Images Using Machine Learning 9.1 Introduction 9.2 Literature Review 9.2.1 Skin Burns 9.2.2 Causes of Burn Injuries 9.2.3 Burns Category 9.2.4 Burn Assessment Techniques 9.2.4.1 Clinical Assessment 9.2.4.2 Blood Perfusion Measurement 9.3 Machine Learning 9.3.1 Convolutional Neural Networks 9.3.1.1 Convolution Layer 9.3.1.2 Pooling Layer 9.3.1.3 Output/Classification Layer 9.3.2 Training a ConvNet 9.3.3 Common ConvNet Models 9.3.3.1 AlexNet 9.3.3.2 GoogleNet 9.3.3.3 VGGNet 9.3.3.4 Residual Network 9.4 Goals and Methodology 9.4.1 Image Acquisition and Preprocessing 9.4.2 Feature Extraction and Classification 9.5 Results and Discussion 9.5.1 Terms Related to Contingency Table 9.5.2 Classifier Performance 9.6 Conclusions References Chapter 10 A Study and Analysis of an Emotion Classification and State-Transition System in Brain Computer Interfacing 10.1 Introduction 10.2 Literature Review 10.3 Proposed Work 10.3.1 Classification Processes 10.3.1.1 SVM Classifier 10.3.1.2 KNN Classifier 10.3.1.3 Random Forest Classifier 10.3.2 State-Transition Machine 10.3.2.1 Proposed Algorithm of Emotional State Transition Based on Channel Value for a Fixed Time Interval 10.4 Result Analysis 10.4.1 Requirement 10.4.2 Result Comparisons of SVM, KNN, and Random Forest Classifiers 10.4.3 SVM Polynomial Kernel Performance Analysis 10.4.4 Analysis of the State-Transition Machine 10.4.5 Comparison with Previous Works 10.4.6 Computational Complexity 10.5 Conclusion Acknowledgment References PART III: Applications and New Trends in Data Science Chapter 11 Comparison of Gradient and Textural Features for Writer Retrieval in Handwritten Documents 11.1 Introduction 11.2 Literature Review 11.3 Adopted Features 11.3.1 Local Binary Pattern 11.3.2 Histogram of Oriented Gradients 11.3.3 Gradient Local Binary Pattern 11.3.4 Pixel Density 11.3.5 Run Length Feature 11.4 Matching Step 11.5 Experimental Evaluation 11.5.1 Evaluation Criteria 11.5.2 Experimental Setup 11.5.3 Retrieval Results 11.6 Discussion and Comparison 11.7 Conclusion References Chapter 12 A Supervised Guest Satisfaction Classification with Review Text and Ratings 12.1 Introduction 12.2 Related Literature 12.2.1 Guest Satisfaction and Online Reviews 12.3 Methodology 12.3.1 Data Description and Analysis 12.3.2 Data Cleaning 12.3.3 Latent Semantic Analysis 12.3.4 Classifiers and Performance Measures 12.4 Experimental Results 12.4.1 Features Related to Guest Satisfaction 12.4.2 Hotel Guest Satisfaction Prediction 12.5 Discussions and Conclusion 12.6 Implications 12.6.1 Theoretical Implications 12.6.2 Managerial Implications 12.7 Limitations and Future Scope References Chapter 13 Sentiment Analysis for Decision-Making Using Machine Learning Algorithms 13.1 Introduction 13.2 Literature Review 13.2.1 Related Studies and Techniques 13.3 Methods 13.3.1 Naïve Bayes Classifier 13.3.2 Support Vector Machine 13.4 Data Analysis and Algorithm Initialization 13.4.1 Experimental Setup 13.4.2 Data Preparation and Model Initialization 13.4.3 Evaluation Measures 13.4.4 Planned Approach 13.5 Results and Model Evaluation 13.6 Conclusion and Future Works 13.7 Acknowledgment References Chapter 14 Deep Learning Model: Emotion Recognition from Continuous Action Video 14.1 Introduction 14.2 Related Works 14.3 Learning 14.3.1 Nondeep Learning-Based Approaches 14.3.1.1 Dictionary Learning Approaches 14.3.1.2 Genetic Programming Approaches 14.3.2 Deep Learning-Based Approaches 14.3.2.1 Generative/Unsupervised Approaches 14.3.2.2 Discriminative/Supervised Approaches 14.3.3 Convolutional Neural Network 14.3.3.1 Convolutional Layer 14.3.3.2 Subsampling Layers 14.3.3.3 Rectified Linear Unit 14.3.3.4 Fully Connected Layer 14.3.3.5 Softmax Layer 14.3.3.6 Output Layer 14.3.4 Feedforward Deep Convolutional Neural Network 14.3.5 VGG16 Model 14.4 Performance Evaluation Metrics 14.4.1 Dataset 14.4.2 Performance Evaluation Metrics 14.5 Results and Discussions 14.6 Conclusion References Index