دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Stephen Klosterman
سری:
ISBN (شابک) : 9781838551025
ناشر:
سال نشر: 2019
تعداد صفحات: 374
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Data Science Projects with Python: A case study approach to successful data science projects using Python, pandas, and scikit-learn به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پروژههای علم داده با پایتون: یک رویکرد مطالعه موردی برای پروژههای موفق علم داده با استفاده از پایتون، پانداها، و scikit-learn نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover FM Copyright Table of Contents Preface Chapter 1: Data Exploration and Cleaning Introduction Python and the Anaconda Package Management System Indexing and the Slice Operator Exercise 1: Examining Anaconda and Getting Familiar with Python Different Types of Data Science Problems Loading the Case Study Data with Jupyter and pandas Exercise 2: Loading the Case Study Data in a Jupyter Notebook Getting Familiar with Data and Performing Data Cleaning The Business Problem Data Exploration Steps Exercise 3: Verifying Basic Data Integrity Boolean Masks Exercise 4: Continuing Verification of Data Integrity Exercise 5: Exploring and Cleaning the Data Data Quality Assurance and Exploration Exercise 6: Exploring the Credit Limit and Demographic Features Deep Dive: Categorical Features Exercise 7: Implementing OHE for a Categorical Feature Exploring the Financial History Features in the Dataset Activity 1: Exploring Remaining Financial Features in the Dataset Summary Chapter 2: Introduction to Scikit-Learn and Model Evaluation Introduction Exploring the Response Variable and Concluding the Initial Exploration Introduction to Scikit-Learn Generating Synthetic Data Data for a Linear Regression Exercise 8: Linear Regression in Scikit-Learn Model Performance Metrics for Binary Classification Splitting the Data: Training and Testing sets Classification Accuracy True Positive Rate, False Positive Rate, and Confusion Matrix Exercise 9: Calculating the True and False Positive and Negative Rates and Confusion Matrix in Python Discovering Predicted Probabilities: How Does Logistic Regression Make Predictions? Exercise 10: Obtaining Predicted Probabilities from a Trained Logistic Regression Model The Receiver Operating Characteristic (ROC) Curve Precision Activity 2: Performing Logistic Regression with a New Feature and Creating a Precision-Recall Curve Summary Chapter 3: Details of Logistic Regression and Feature Exploration Introduction Examining the Relationships between Features and the Response Pearson Correlation F-test Exercise 11: F-test and Univariate Feature Selection Finer Points of the F-test: Equivalence to t-test for Two Classes and Cautions Hypotheses and Next Steps Exercise 12: Visualizing the Relationship between Features and Response Univariate Feature Selection: What It Does and Doesn't Do Understanding Logistic Regression with function Syntax in Python and the Sigmoid Function Exercise 13: Plotting the Sigmoid Function Scope of Functions Why is Logistic Regression Considered a Linear Model? Exercise 14: Examining the Appropriateness of Features for Logistic Regression From Logistic Regression Coefficients to Predictions Using the Sigmoid Exercise 15: Linear Decision Boundary of Logistic Regression Activity 3: Fitting a Logistic Regression Model and Directly Using the Coefficients Summary Chapter 4: The Bias-Variance Trade-off Introduction Estimating the Coefficients and Intercepts of Logistic Regression Gradient Descent to Find Optimal Parameter Values Exercise 16: Using Gradient Descent to Minimize a Cost Function Assumptions of Logistic Regression The Motivation for Regularization: The Bias-Variance Trade-off Exercise 17: Generating and Modeling Synthetic Classification Data Lasso (L1) and Ridge (L2) Regularization Cross Validation: Choosing the Regularization Parameter and Other Hyperparameters Exercise 18: Reducing Overfitting on the Synthetic Data Classification Problem Options for Logistic Regression in Scikit-Learn Scaling Data, Pipelines, and Interaction Features in Scikit-Learn Activity 4: Cross-Validation and Feature Engineering with the Case Study Data Summary Chapter 5: Decision Trees and Random Forests Introduction Decision trees The Terminology of Decision Trees and Connections to Machine Learning Exercise 19: A Decision Tree in scikit-learn Training Decision Trees: Node Impurity Features Used for the First splits: Connections to Univariate Feature Selection and Interactions Training Decision Trees: A Greedy Algorithm Training Decision Trees: Different Stopping Criteria Using Decision Trees: Advantages and Predicted Probabilities A More Convenient Approach to Cross-Validation Exercise 20: Finding Optimal Hyperparameters for a Decision Tree Random Forests: Ensembles of Decision Trees Random Forest: Predictions and Interpretability Exercise 21: Fitting a Random Forest Checkerboard Graph Activity 5: Cross-Validation Grid Search with Random Forest Summary Chapter 6: Imputation of Missing Data, Financial Analysis, and Delivery to Client Introduction Review of Modeling Results Dealing with Missing Data: Imputation Strategies Preparing Samples with Missing Data Exercise 22: Cleaning the Dataset Exercise 23: Mode and Random Imputation of PAY_1 A Predictive Model for PAY_1 Exercise 24: Building a Multiclass Classification Model for Imputation Using the Imputation Model and Comparing it to Other Methods Confirming Model Performance on the Unseen Test Set Financial Analysis Financial Conversation with the Client Exercise 25: Characterizing Costs and Savings Activity 6: Deriving Financial Insights Final Thoughts on Delivering the Predictive Model to the Client Summary Appendix Index