دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Stephan Klosterman
سری:
ISBN (شابک) : 9781800564480
ناشر: Packt Publishing Pvt. Ltd.
سال نشر: 2021
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 20 مگابایت
در صورت تبدیل فایل کتاب Data Science Projects with Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پروژه های علم داده با پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
به دست آوردن تجربه عملی برنامه نویسی پایتون با تکنیک های یادگیری ماشینی استاندارد صنعتی با استفاده از پانداها، scikit-learn، و ویژگی های کلیدی XGBoost به طور انتقادی در مورد داده ها فکر کنید و از آنها برای تشکیل و آزمایش یک فرضیه استفاده کنید. داده ها بینش های مبتنی بر داده را با اطمینان و شفافیت به اشتراک بگذارید. همانطور که شرکت ها به مقادیر روزافزونی از داده های خام دسترسی پیدا می کنند، توانایی ارائه مدل های پیش بینی پیشرفته که از تصمیم گیری تجاری پشتیبانی می کنند بیشتر و بیشتر ارزشمند می شود. در این کتاب، شما بر روی یک پروژه انتها به انتها بر اساس مجموعه داده های واقعی کار خواهید کرد و به تمرین های عملی کوچک تقسیم می شوید. این یک رویکرد مطالعه موردی ایجاد می کند که شرایط کاری را که در پروژه های علم داده در دنیای واقعی تجربه خواهید کرد، شبیه سازی می کند. شما یاد خواهید گرفت که چگونه از بسته های کلیدی پایتون، از جمله پانداها، Matplotlib، و scikit-learn استفاده کنید و بر فرآیند کاوش و پردازش داده ها مسلط شوید، قبل از اینکه به الگوریتم های برازش، ارزیابی و تنظیم مانند رگرسیون لجستیک منظم و تصادفی بروید. جنگل. اکنون در ویرایش دوم خود، این کتاب شما را از طریق فرآیند پایان به انتها کاوش داده ها و ارائه مدل های یادگیری ماشینی راهنمایی می کند. این نسخه که برای سال 2021 بهروزرسانی شده است، حاوی محتوای کاملاً جدید در XGBoost، مقادیر SHAP، عدالت الگوریتمی و نگرانیهای اخلاقی استقرار یک مدل در دنیای واقعی است. در پایان این کتاب علم داده، مهارت، درک و اعتماد به نفس برای ساختن مدلهای یادگیری ماشین خود و به دست آوردن بینش از دادههای واقعی را خواهید داشت. آنچه یاد خواهید گرفت بارگیری، کاوش و پردازش داده ها با استفاده از بسته پایتون پانداها از Matplotlib برای ایجاد تجسم داده های قانع کننده استفاده کنید. بینش های تجاری با ارائه نتیجه گیری های واضح و قانع کننده این کتاب برای پروژه های علم داده با پایتون کیست - نسخه دوم برای هر کسی است که می خواهد با علم داده و یادگیری ماشین شروع کند. اگر میخواهید با استفاده از تجزیه و تحلیل دادهها و مدلسازی پیشبینیکننده برای ایجاد بینشهای تجاری، شغل خود را پیش ببرید، این کتاب بهترین مکان برای شروع است. برای درک سریع مفاهیم تحت پوشش، توصیه می شود که تجربه اولیه برنامه نویسی با پایتون یا زبان مشابه دیگر و علاقه کلی به آمار داشته باشید.
Gain hands-on experience of Python programming with industry-standard machine learning techniques using pandas, scikit-learn, and XGBoost Key Features Think critically about data and use it to form and test a hypothesis Choose an appropriate machine learning model and train it on your data Communicate data-driven insights with confidence and clarity Book Description If data is the new oil, then machine learning is the drill. As companies gain access to ever-increasing quantities of raw data, the ability to deliver state-of-the-art predictive models that support business decision-making becomes more and more valuable. In this book, you'll work on an end-to-end project based around a realistic data set and split up into bite-sized practical exercises. This creates a case-study approach that simulates the working conditions you'll experience in real-world data science projects. You'll learn how to use key Python packages, including pandas, Matplotlib, and scikit-learn, and master the process of data exploration and data processing, before moving on to fitting, evaluating, and tuning algorithms such as regularized logistic regression and random forest. Now in its second edition, this book will take you through the end-to-end process of exploring data and delivering machine learning models. Updated for 2021, this edition includes brand new content on XGBoost, SHAP values, algorithmic fairness, and the ethical concerns of deploying a model in the real world. By the end of this data science book, you'll have the skills, understanding, and confidence to build your own machine learning models and gain insights from real data. What you will learn Load, explore, and process data using the pandas Python package Use Matplotlib to create compelling data visualizations Implement predictive machine learning models with scikit-learn Use lasso and ridge regression to reduce model overfitting Evaluate random forest and logistic regression model performance Deliver business insights by presenting clear, convincing conclusions Who this book is for Data Science Projects with Python - Second Edition is for anyone who wants to get started with data science and machine learning. If you're keen to advance your career by using data analysis and predictive modeling to generate business insights, then this book is the perfect place to begin. To quickly grasp the concepts covered, it is recommended that you have basic experience of programming with Python or another similar language, and a general interest in statistics.
Cover FM Copyright Table of Contents Preface Chapter 1: Data Exploration and Cleaning Introduction Python and the Anaconda Package Management System Indexing and the Slice Operator Exercise 1.01: Examining Anaconda and Getting Familiar with Python Different Types of Data Science Problems Loading the Case Study Data with Jupyter and pandas Exercise 1.02: Loading the Case Study Data in a Jupyter Notebook Getting Familiar with Data and Performing Data Cleaning The Business Problem Data Exploration Steps Exercise 1.03: Verifying Basic Data Integrity Boolean Masks Exercise 1.04: Continuing Verification of Data Integrity Exercise 1.05: Exploring and Cleaning the Data Data Quality Assurance and Exploration Exercise 1.06: Exploring the Credit Limit and Demographic Features Deep Dive: Categorical Features Exercise 1.07: Implementing OHE for a Categorical Feature Exploring the Financial History Features in the Dataset Activity 1.01: Exploring the Remaining Financial Features in the Dataset Summary Chapter 2: Introduction to Scikit-Learn and Model Evaluation Introduction Exploring the Response Variable and Concluding the Initial Exploration Introduction to Scikit-Learn Generating Synthetic Data Data for Linear Regression Exercise 2.01: Linear Regression in Scikit-Learn Model Performance Metrics for Binary Classification Splitting the Data: Training and Test Sets Classification Accuracy True Positive Rate, False Positive Rate, and Confusion Matrix Exercise 2.02: Calculating the True and False Positive and Negative Rates and Confusion Matrix in Python Discovering Predicted Probabilities: How Does Logistic Regression Make Predictions? Exercise 2.03: Obtaining Predicted Probabilities from a Trained Logistic Regression Model The Receiver Operating Characteristic (ROC) Curve Precision Activity 2.01: Performing Logistic Regression with a New Feature and Creating a Precision-Recall Curve Summary Chapter 3: Details of Logistic Regression and Feature Exploration Introduction Examining the Relationships Between Features and the Response Variable Pearson Correlation Mathematics of Linear Correlation F-test Exercise 3.01: F-test and Univariate Feature Selection Finer Points of the F-test: Equivalence to the t-test for Two Classes and Cautions Hypotheses and Next Steps Exercise 3.02: Visualizing the Relationship Between the Features and Response Variable Univariate Feature Selection: What it Does and Doesn't Do Understanding Logistic Regression and the Sigmoid Function Using Function Syntax in Python Exercise 3.03: Plotting the Sigmoid Function Scope of Functions Why Is Logistic Regression Considered a Linear Model? Exercise 3.04: Examining the Appropriateness of Features for Logistic Regression From Logistic Regression Coefficients to Predictions Using Sigmoid Exercise 3.05: Linear Decision Boundary of Logistic Regression Activity 3.01: Fitting a Logistic Regression Model and Directly Using the Coefficients Summary Chapter 4: The Bias-Variance Trade-Off Introduction Estimating the Coefficients and Intercepts of Logistic Regression Gradient Descent to Find Optimal Parameter Values Exercise 4.01: Using Gradient Descent to Minimize a Cost Function Assumptions of Logistic Regression The Motivation for Regularization: The Bias-Variance Trade-Off Exercise 4.02: Generating and Modeling Synthetic Classification Data Lasso (L1) and Ridge (L2) Regularization Cross-Validation: Choosing the Regularization Parameter Exercise 4.03: Reducing Overfitting on the Synthetic Data Classification Problem Options for Logistic Regression in Scikit-Learn Scaling Data, Pipelines, and Interaction Features in Scikit-Learn Activity 4.01: Cross-Validation and Feature Engineering with the Case Study Data Summary Chapter 5: Decision Trees and Random Forests Introduction Decision Trees The Terminology of Decision Trees and Connections to Machine Learning Exercise 5.01: A Decision Tree in Scikit-Learn Training Decision Trees: Node Impurity Features Used for the First Splits: Connections to Univariate Feature Selection and Interactions Training Decision Trees: A Greedy Algorithm Training Decision Trees: Different Stopping Criteria and Other Options Using Decision Trees: Advantages and Predicted Probabilities A More Convenient Approach to Cross-Validation Exercise 5.02: Finding Optimal Hyperparameters for a Decision Tree Random Forests: Ensembles of Decision Trees Random Forest: Predictions and Interpretability Exercise 5.03: Fitting a Random Forest Checkerboard Graph Activity 5.01: Cross-Validation Grid Search with Random Forest Summary Chapter 6: Gradient Boosting, XGBoost, and SHAP Values Introduction Gradient Boosting and XGBoost What Is Boosting? Gradient Boosting and XGBoost XGBoost Hyperparameters Early Stopping Tuning the Learning Rate Other Important Hyperparameters in XGBoost Exercise 6.01: Randomized Grid Search for Tuning XGBoost Hyperparameters Another Way of Growing Trees: XGBoost's grow_policy Explaining Model Predictions with SHAP Values Exercise 6.02: Plotting SHAP Interactions, Feature Importance, and Reconstructing Predicted Probabilities from SHAP Values Missing Data Saving Python Variables to a File Activity 6.01: Modeling the Case Study Data with XGBoost and Explaining the Model with SHAP Summary Chapter 7: Test Set Analysis, Financial Insights, and Delivery to the Client Introduction Review of Modeling Results Feature Engineering Ensembling Multiple Models Different Modeling Techniques Balancing Classes Model Performance on the Test Set Distribution of Predicted Probability and Decile Chart Exercise 7.01: Equal-Interval Chart Calibration of Predicted Probabilities Financial Analysis Financial Conversation with the Client Exercise 7.02: Characterizing Costs and Savings Activity 7.01: Deriving Financial Insights Final Thoughts on Delivering a Predictive Model to the Client Model Monitoring Ethics in Predictive Modeling Summary Appendix Index