دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Maria C. Mariani
سری:
ISBN (شابک) : 9781119674689, 1119674689
ناشر: Wiley
سال نشر: 2021
تعداد صفحات: 403
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Data Science in Theory and Practice: Techniques for Big Data Analytics and Complex Data Sets به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علم داده در تئوری و عمل: تکنیک هایی برای تجزیه و تحلیل داده های بزرگ و مجموعه داده های پیچیده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مبانی علم داده را با این منبع جدید روشنگر کاوش کنید
علم داده در تئوری و عمل یک درمان جامع از مدل های ریاضی و آماری مفید برای تجزیه و تحلیل مجموعه داده های ناشی از رشته های مختلف مانند بانکداری، مالی، مراقبت های بهداشتی، بیوانفورماتیک، امنیت، آموزش و خدمات اجتماعی ارائه می دهد. این کتاب که در پنج بخش نوشته شده است، به بررسی برخی از رایج ترین و اساسی ترین مفاهیم ریاضی و آماری می پردازد که اساس علم داده را تشکیل می دهند. نویسندگان به تجزیه و تحلیل تکنیک های مختلف تبدیل داده ها برای استخراج اطلاعات از داده های خام، رفتار حافظه طولانی و مدل سازی پیش بینی می پردازند.
این کتاب موضوعات متعددی را در اختیار خوانندگان قرار می دهد که همگی مربوط به تجزیه و تحلیل مجموعه داده های پیچیده است. همراه با اکتشاف قوی در تئوری مبتنی بر علم داده، کاربردهای متعددی برای مسائل خاص و عملی دارد. این کتاب همچنین نمونه هایی از الگوریتم های کد در R و Python را ارائه می دهد و شبه الگوریتم هایی را برای انتقال کد به هر زبان دیگری ارائه می دهد.
ایدهآل برای دانشآموزان و شاغلین بدون پیشزمینه قوی در علم داده، خوانندگان همچنین از موضوعاتی مانند:
مناسب برای دانشجویان پیشرفته کارشناسی و کارشناسی ارشد در برنامه های علوم داده، تجزیه و تحلیل تجاری، و آمار، علم داده در تئوری و عمل همچنین جایگاهی در کتابخانههای متخصصان داده، تحلیلگران داده و کسب و کار، و آماردانان در بخش خصوصی، دولت و دانشگاه کسب خواهد کرد.
EXPLORE THE FOUNDATIONS OF DATA SCIENCE WITH THIS INSIGHTFUL NEW RESOURCE
Data Science in Theory and Practice delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling.
The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python and provides pseudo-algorithms to port the code to any other language.
Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like:
Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs, Data Science in Theory and Practice will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.
Cover Title Page Copyright Contents List of Figures List of Tables Preface Chapter 1 Background of Data Science 1.1 Introduction 1.2 Origin of Data Science 1.3 Who is a Data Scientist? 1.4 Big Data 1.4.1 Characteristics of Big Data 1.4.2 Big Data Architectures Chapter 2 Matrix Algebra and Random Vectors 2.1 Introduction 2.2 Some Basics of Matrix Algebra 2.2.1 Vectors 2.2.2 Matrices 2.3 Random Variables and Distribution Functions 2.3.1 The Dirichlet Distribution 2.3.2 Multinomial Distribution 2.3.3 Multivariate Normal Distribution 2.4 Problems Chapter 3 Multivariate Analysis 3.1 Introduction 3.2 Multivariate Analysis: Overview 3.3 Mean Vectors 3.4 Variance–Covariance Matrices 3.5 Correlation Matrices 3.6 Linear Combinations of Variables 3.6.1 Linear Combinations of Sample Means 3.6.2 Linear Combinations of Sample Variance and Covariance 3.6.3 Linear Combinations of Sample Correlation 3.7 Problems Chapter 4 Time Series Forecasting 4.1 Introduction 4.2 Terminologies 4.3 Components of Time Series 4.3.1 Seasonal 4.3.2 Trend 4.3.3 Cyclical 4.3.4 Random 4.4 Transformations to Achieve Stationarity 4.5 Elimination of Seasonality via Differencing 4.6 Additive and Multiplicative Models 4.7 Measuring Accuracy of Different Time Series Techniques 4.7.1 Mean Absolute Deviation 4.7.2 Mean Absolute Percent Error 4.7.3 Mean Square Error 4.7.4 Root Mean Square Error 4.8 Averaging and Exponential Smoothing Forecasting Methods 4.8.1 Averaging Methods 4.8.1.1 Simple Moving Averages 4.8.1.2 Weighted Moving Averages 4.8.2 Exponential Smoothing Methods 4.8.2.1 Simple Exponential Smoothing 4.8.2.2 Adjusted Exponential Smoothing 4.9 Problems Chapter 5 Introduction to R 5.1 Introduction 5.2 Basic Data Types 5.2.1 Numeric Data Type 5.2.2 Integer Data Type 5.2.3 Character 5.2.4 Complex Data Types 5.2.5 Logical Data Types 5.3 Simple Manipulations – Numbers and Vectors 5.3.1 Vectors and Assignment 5.3.2 Vector Arithmetic 5.3.3 Vector Index 5.3.4 Logical Vectors 5.3.5 Missing Values 5.3.6 Index Vectors 5.3.6.1 Indexing with Logicals 5.3.6.2 A Vector of Positive Integral Quantities 5.3.6.3 A Vector of Negative Integral Quantities 5.3.6.4 Named Indexing 5.3.7 Other Types of Objects 5.3.7.1 Matrices 5.3.7.2 List 5.3.7.3 Factor 5.3.7.4 Data Frames 5.3.8 Data Import 5.3.8.1 Excel File 5.3.8.2 CSV File 5.3.8.3 Table File 5.3.8.4 Minitab File 5.3.8.5 SPSS File 5.4 Problems Chapter 6 Introduction to Python 6.1 Introduction 6.2 Basic Data Types 6.2.1 Number Data Type 6.2.1.1 Integer 6.2.1.2 Floating‐Point Numbers 6.2.1.3 Complex Numbers 6.2.2 Strings 6.2.3 Lists 6.2.4 Tuples 6.2.5 Dictionaries 6.3 Number Type Conversion 6.4 Python Conditions 6.4.1 If Statements 6.4.2 The Else and Elif Clauses 6.4.3 The While Loop 6.4.3.1 The Break Statement 6.4.3.2 The Continue Statement 6.4.4 For Loops 6.4.4.1 Nested Loops 6.5 Python File Handling: Open, Read, and Close 6.6 Python Functions 6.6.1 Calling a Function in Python 6.6.2 Scope and Lifetime of Variables 6.7 Problems Chapter 7 Algorithms 7.1 Introduction 7.2 Algorithm – Definition 7.3 How to Write an Algorithm 7.3.1 Algorithm Analysis 7.3.2 Algorithm Complexity 7.3.3 Space Complexity 7.3.4 Time Complexity 7.4 Asymptotic Analysis of an Algorithm 7.4.1 Asymptotic Notations 7.4.1.1 Big O Notation 7.4.1.2 The Omega Notation, Ω 7.4.1.3 The Θ Notation 7.5 Examples of Algorithms 7.6 Flowchart 7.7 Problems Chapter 8 Data Preprocessing and Data Validations 8.1 Introduction 8.2 Definition – Data Preprocessing 8.3 Data Cleaning 8.3.1 Handling Missing Data 8.3.2 Types of Missing Data 8.3.2.1 Missing Completely at Random 8.3.2.2 Missing at Random 8.3.2.3 Missing Not at Random 8.3.3 Techniques for Handling the Missing Data 8.3.3.1 Listwise Deletion 8.3.3.2 Pairwise Deletion 8.3.3.3 Mean Substitution 8.3.3.4 Regression Imputation 8.3.3.5 Multiple Imputation 8.3.4 Identifying Outliers and Noisy Data 8.3.4.1 Binning 8.3.4.2 Box and Whisker plot 8.4 Data Transformations 8.4.1 Min–Max Normalization 8.4.2 Z‐score Normalization 8.5 Data Reduction 8.6 Data Validations 8.6.1 Methods for Data Validation 8.6.1.1 Simple Statistical Criterion 8.6.1.2 Fourier Series Modeling and SSC 8.6.1.3 Principal Component Analysis and SSC 8.7 Problems Chapter 9 Data Visualizations 9.1 Introduction 9.2 Definition – Data Visualization 9.2.1 Scientific Visualization 9.2.2 Information Visualization 9.2.3 Visual Analytics 9.3 Data Visualization Techniques 9.3.1 Time Series Data 9.3.2 Statistical Distributions 9.3.2.1 Stem‐and‐Leaf Plots 9.3.2.2 Q–Q Plots 9.4 Data Visualization Tools 9.4.1 Tableau 9.4.2 Infogram 9.4.3 Google Charts 9.5 Problems Chapter 10 Binomial and Trinomial Trees 10.1 Introduction 10.2 The Binomial Tree Method 10.2.1 One Step Binomial Tree 10.2.2 Using the Tree to Price a European Option 10.2.3 Using the Tree to Price an American Option 10.2.4 Using the Tree to Price Any Path Dependent Option 10.3 Binomial Discrete Model 10.3.1 One‐Step Method 10.3.2 Multi‐step Method 10.3.2.1 Example: European Call Option 10.4 Trinomial Tree Method 10.4.1 What is the Meaning of Little o and Big O? 10.5 Problems Chapter 11 Principal Component Analysis 11.1 Introduction 11.2 Background of Principal Component Analysis 11.3 Motivation 11.3.1 Correlation and Redundancy 11.3.2 Visualization 11.4 The Mathematics of PCA 11.4.1 The Eigenvalues and Eigenvectors 11.5 How PCA Works 11.5.1 Algorithm 11.6 Application 11.7 Problems Chapter 12 Discriminant and Cluster Analysis 12.1 Introduction 12.2 Distance 12.3 Discriminant Analysis 12.3.1 Kullback–Leibler Divergence 12.3.2 Chernoff Distance 12.3.3 Application – Seismic Time Series 12.3.4 Application – Financial Time Series 12.4 Cluster Analysis 12.4.1 Partitioning Algorithms 12.4.2 k‐Means Algorithm 12.4.3 k‐Medoids Algorithm 12.4.4 Application – Seismic Time Series 12.4.5 Application – Financial Time Series 12.5 Problems Chapter 13 Multidimensional Scaling 13.1 Introduction 13.2 Motivation 13.3 Number of Dimensions and Goodness of Fit 13.4 Proximity Measures 13.5 Metric Multidimensional Scaling 13.5.1 The Classical Solution 13.6 Nonmetric Multidimensional Scaling 13.6.1 Shepard–Kruskal Algorithm 13.7 Problems Chapter 14 Classification and Tree‐Based Methods 14.1 Introduction 14.2 An Overview of Classification 14.2.1 The Classification Problem 14.2.2 Logistic Regression Model 14.2.2.1 l1 Regularization 14.2.2.2 l2 Regularization 14.3 Linear Discriminant Analysis 14.3.1 Optimal Classification and Estimation of Gaussian Distribution 14.4 Tree‐Based Methods 14.4.1 One Single Decision Tree 14.4.2 Random Forest 14.5 Applications 14.6 Problems Chapter 15 Association Rules 15.1 Introduction 15.2 Market Basket Analysis 15.3 Terminologies 15.3.1 Itemset and Support Count 15.3.2 Frequent Itemset 15.3.3 Closed Frequent Itemset 15.3.4 Maximal Frequent Itemset 15.3.5 Association Rule 15.3.6 Rule Evaluation Metrics 15.4 The Apriori Algorithm 15.4.1 An example of the Apriori Algorithm 15.5 Applications 15.5.1 Confidence 15.5.2 Lift 15.5.3 Conviction 15.6 Problems Chapter 16 Support Vector Machines 16.1 Introduction 16.2 The Maximal Margin Classifier 16.3 Classification Using a Separating Hyperplane 16.4 Kernel Functions 16.5 Applications 16.6 Problems Chapter 17 Neural Networks 17.1 Introduction 17.2 Perceptrons 17.3 Feed Forward Neural Network 17.4 Recurrent Neural Networks 17.5 Long Short‐Term Memory 17.5.1 Residual Connections 17.5.2 Loss Functions 17.5.3 Stochastic Gradient Descent 17.5.4 Regularization – Ensemble Learning 17.6 Application 17.6.1 Emergent and Developed Market 17.6.2 The Lehman Brothers Collapse 17.6.3 Methodology 17.6.4 Analyses of Data 17.6.4.1 Results of the Emergent Market Index 17.6.4.2 Results of the Developed Market Index 17.7 Significance of Study 17.8 Problems Chapter 18 Fourier Analysis 18.1 Introduction 18.2 Definition 18.3 Discrete Fourier Transform 18.4 The Fast Fourier Transform (FFT) Method 18.5 Dynamic Fourier Analysis 18.5.1 Tapering 18.5.2 Daniell Kernel Estimation 18.6 Applications of the Fourier Transform 18.6.1 Modeling Power Spectrum of Financial Returns Using Fourier Transforms 18.6.2 Image Compression 18.7 Problems Chapter 19 Wavelets Analysis 19.1 Introduction 19.1.1 Wavelets Transform 19.2 Discrete Wavelets Transforms 19.2.1 Haar Wavelets 19.2.1.1 Haar Functions 19.2.1.2 Haar Transform Matrix 19.2.2 Daubechies Wavelets 19.3 Applications of the Wavelets Transform 19.3.1 Discriminating Between Mining Explosions and Cluster of Earthquakes 19.3.1.1 Background of Data 19.3.1.2 Results 19.3.2 Finance 19.3.3 Damage Detection in Frame Structures 19.3.4 Image Compression 19.3.5 Seismic Signals 19.4 Problems Chapter 20 Stochastic Analysis 20.1 Introduction 20.2 Necessary Definitions from Probability Theory 20.3 Stochastic Processes 20.3.1 The Index Set I 20.3.2 The State Space S 20.3.3 Stationary and Independent Components 20.3.4 Stationary and Independent Increments 20.3.5 Filtration and Standard Filtration 20.4 Examples of Stochastic Processes 20.4.1 Markov Chains 20.4.1.1 Examples of Markov Processes 20.4.1.2 The Chapman–Kolmogorov Equation 20.4.1.3 Classification of States 20.4.1.4 Limiting Probabilities 20.4.1.5 Branching Processes 20.4.1.6 Time Homogeneous Chains 20.4.2 Martingales 20.4.3 Simple Random Walk 20.4.4 The Brownian Motion (Wiener Process) 20.5 Measurable Functions and Expectations 20.5.1 Radon–Nikodym Theorem and Conditional Expectation 20.6 Problems Chapter 21 Fractal Analysis – Lévy, Hurst, DFA, DEA 21.1 Introduction and Definitions 21.2 Lévy Processes 21.2.1 Examples of Lévy Processes 21.2.1.1 The Poisson Process (Jumps) 21.2.1.2 The Compound Poisson Process 21.2.1.3 Inverse Gaussian (IG) Process 21.2.1.4 The Gamma Process 21.2.2 Exponential Lévy Models 21.2.3 Subordination of Lévy Processes 21.2.4 Stable Distributions 21.3 Lévy Flight Models 21.4 Rescaled Range Analysis (Hurst Analysis) 21.5 Detrended Fluctuation Analysis (DFA) 21.6 Diffusion Entropy Analysis (DEA) 21.6.1 Estimation Procedure 21.6.1.1 The Shannon Entropy 21.6.2 The H–α Relationship for the Truncated Lévy Flight 21.7 Application – Characterization of Volcanic Time Series 21.7.1 Background of Volcanic Data 21.7.2 Results 21.8 Problems Chapter 22 Stochastic Differential Equations 22.1 Introduction 22.2 Stochastic Differential Equations 22.2.1 Solution Methods of SDEs 22.3 Examples 22.3.1 Modeling Asset Prices 22.3.2 Modeling Magnitude of Earthquake Series 22.4 Multidimensional Stochastic Differential Equations 22.4.1 The multidimensional Ornstein–Uhlenbeck Processes 22.4.2 Solution of the Ornstein–Uhlenbeck Process 22.5 Simulation of Stochastic Differential Equations 22.5.1 Euler–Maruyama Scheme for Approximating Stochastic Differential Equations 22.5.2 Euler–Milstein Scheme for Approximating Stochastic Differential Equations 22.6 Problems Chapter 23 Ethics: With Great Power Comes Great Responsibility 23.1 Introduction 23.2 Data Science Ethical Principles 23.2.1 Enhance Value in Society 23.2.2 Avoiding Harm 23.2.3 Professional Competence 23.2.4 Increasing Trustworthiness 23.2.5 Maintaining Accountability and Oversight 23.3 Data Science Code of Professional Conduct 23.4 Application 23.4.1 Project Planning 23.4.2 Data Preprocessing 23.4.3 Data Management 23.4.4 Analysis and Development 23.5 Problems Bibliography Index EULA