ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Data Science Fundamentals Pocket Primer

دانلود کتاب پرایمر جیبی Data Science Fundamentals

Data Science Fundamentals Pocket Primer

مشخصات کتاب

Data Science Fundamentals Pocket Primer

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 1683927338, 9781683927334 
ناشر: Mercury Learning and Information 
سال نشر: 2021 
تعداد صفحات: 451 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 4 مگابایت 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Data Science Fundamentals Pocket Primer به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پرایمر جیبی Data Science Fundamentals نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پرایمر جیبی Data Science Fundamentals


توضیحاتی درمورد کتاب به خارجی

As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to the basic concepts of data science using Python 3 and other computer applications. It is intended to be a fast-paced introduction to some basic features of data analytics and also covers statistics, data visualization, linear algebra, and regular expressions. The book includes numerous code samples using Python, NumPy, R, SQL, NoSQL, and Pandas. Companion files with source code and color figures are available. FEATURES:
  • Includes a concise introduction to Python 3 and linear algebra
  • Provides a thorough introduction to data visualization and regular expressions
  • Covers NumPy, Pandas, R, and SQL
  • Introduces probability and statistical concepts
  • Features numerous code samples throughout
  • Companion files with source code and figures
The companion files are available online by emailing the publisher with proof of purchase at info@merclearning.com.


فهرست مطالب

Cover
Titlte Page
Copyright
Contents
Preface
Chapter 1 Working with Data
	What are Datasets?
		Data Preprocessing
	Data Types
	Preparing Datasets
		Discrete Data Versus Continuous Data
		“Binning” Continuous Data
		Scaling Numeric Data via Normalization
		Scaling Numeric Data via Standardization
		What to Look for in Categorical Data
		Mapping Categorical Data to Numeric Values
		Working with Dates
		Working with Currency
	Missing Data, Anomalies, and Outliers
		Missing Data
		Anomalies and Outliers
		Outlier Detection
		What is Data Drift
	What is Imbalanced Classification?
	What is SMOTE?
		SMOTE Extensions
	Analyzing Classifiers (Optional)
		What is LIME?
		What is ANOVA?
	The Bias-Variance Trade-Off
		Types of Bias in Data
	Summary
Chapter 2 Intro to Probability and Statistics
	What is a Probability?
		Calculating the Expected Value
	Random Variables
		Discrete versus Continuous Random Variables
		Well-Known Probability Distributions
	Fundamental Concepts in Statistics
		The Mean
		The Median
		The Mode
		The Variance and Standard Deviation
		Population, Sample, and Population Variance
		Chebyshev’s Inequality
		What is a P-Value?
	The Moments of a Function (Optional)
		What is Skewness?
		What is Kurtosis?
	Data and Statistics
		The Central Limit Theorem
		Correlation versus Causation
		Statistical Inferences
	Statistical Terms – RSS, TSS, R^2, and F1 Score
		What is an F1 Score?
	Gini Impurity, Entropy, and Perplexity
		What is the Gini Impurity?
		What is Entropy?
		Calculating Gini Impurity and Entropy Values
		Multidimensional Gini Index
		What is Perplexity?
	Cross-Entropy and KL Divergence
		What is Cross-Entropy?
		What is KL Divergence?
		What’s their Purpose?
	Covariance and Correlation Matrices
		The Covariance Matrix
		Covariance Matrix: An Example
		The Correlation Matrix
		Eigenvalues and Eigenvectors
	Calculating Eigenvectors: A Simple Example
		Gauss Jordan Elimination (Optional)
	PCA (Principal Component Analysis)
		The New Matrix of Eigenvectors
	Well-Known Distance Metrics
		Pearson Correlation Coefficient
		Jaccard Index (or Similarity)
		Local Sensitivity Hashing (Optional)
	Types of Distance Metrics
	What is Bayesian Inference?
		Bayes’ Theorem
		Some Bayesian Terminology
		What is MAP?
		Why Use Bayes’ Theorem?
	Summary
Chapter 3 Linear Algebra Concepts
	What is Linear Algebra?
	What are Vectors?
		The Norm of a Vector
		The Inner Product of Two Vectors
		The Cosine Similarity of Two Vectors
		Bases and Spanning Sets
		Three Dimensional Vectors and Beyond
	What are Matrices?
		Add and Multiply Matrices
		The Determinant of a Square Matrix
	Well-Known Matrices
		Properties of Orthogonal Matrices
		Operations Involving Vectors and Matrices
	Gauss Jordan Elimination (Optional)
	Covariance and Correlation Matrices
		The Covariance Matrix
		Covariance Matrix: An Example
		The Correlation Matrix
	Eigenvalues and Eigenvectors
		Calculating Eigenvectors: A Simple Example
	What is PCA (Principal Component Analysis)?
	The Main Steps in PCA
		The New Matrix of Eigenvectors
	Dimensionality Reduction
	Dimensionality Reduction Techniques
		The Curse of Dimensionality
		SVD (Singular Value Decomposition)
		LLE (Locally Linear Embedding)
		UMAP
		t-SNE
		PHATE
	Linear Versus Non-Linear Reduction Techniques
	Complex Numbers (Optional)
		Complex Numbers on the Unit Circle
		Complex Conjugate Root Theorem
		Hermitian Matrices
	Summary
Chapter 4 Introduction to Python
	Tools for Python
		easy_install and pip
		virtualenv
	Python Installation
	Setting the PATH Environment Variable (Windows Only)
	Launching Python on Your Machine
		The Python Interactive Interpreter
	Python Identifiers
	Lines, Indentations, and Multi-Lines
	Quotation and Comments in Python
	Saving Your Code in a Module
	Some Standard Modules in Python
	The help() and dir() Functions
	Compile Time and Runtime Code Checking
	Simple Data Types in Python
	Working with Numbers
		Working with Other Bases
		The chr() Function
		The round() Function in Python
		Formatting Numbers in Python
	Unicode and UTF-8
	Working with Unicode
	Working with Strings
		Comparing Strings
		Formatting Strings in Python
	Uninitialized Variables and the Value None in Python
	Slicing and Splicing Strings
		Testing for Digits and Alphabetic Characters
	Search and Replace a String in Other Strings
	Remove Leading and Trailing Characters
	Printing Text without NewLine Characters
	Text Alignment
	Working with Dates
		Converting Strings to Dates
	Exception Handling in Python
	Handling User Input
	Command-Line Arguments
	Precedence of Operators in Python
	Python Reserved Words
	Working with Loops in Python
		Python For Loops
		A For Loop with try/except in Python
		Numeric Exponents in Python
	Nested Loops
	The split() Function with For Loops
	Using the split() Function to Compare Words
	Using the split() Function to Print Justified Text
	Using the split() Function to Print Fixed Width Text
	Using the split() Function to Compare Text Strings
	Using the split() Function to Display Characters in a String
	The join() Function
	Python While Loops
	Conditional Logic in Python
	The break/continue/pass Statements
	Comparison and Boolean Operators
		The in/not in/is/is not Comparison Operators
		The and, or, and not Boolean Operators
	Local and Global Variables
	Scope of Variables
	Pass by Reference Versus Value
	Arguments and Parameters
	Using a While Loop to Find the Divisors of a Number
		Using a While Loop to Find Prime Numbers
	User-Defined Functions in Python
	Specifying Default Values in a Function
		Returning Multiple Values from a Function
	Functions with a Variable Number of Arguments
	Lambda Expressions
	Recursion
		Calculating Factorial Values
		Calculating Fibonacci Numbers
	Working with Lists
		Lists and Basic Operations
		Reversing and Sorting a List
		Lists and Arithmetic Operations
		Lists and Filter-related Operations
	Sorting Lists of Numbers and Strings
	Expressions in Lists
	Concatenating a List of Words
	The Python range() Function
		Counting Digits, Uppercase, and Lowercase Letters
	Arrays and the append() Function
	Working with Lists and the split() Function
	Counting Words in a List
	Iterating Through Pairs of Lists
	Other List-Related Functions
	Working with Vectors
	Working with Matrices
	Queues
	Tuples (Immutable Lists)
	Sets
	Dictionaries
		Creating a Dictionary
		Displaying the Contents of a Dictionary
		Checking for Keys in a Dictionary
		Deleting Keys from a Dictionary
		Iterating Through a Dictionary
		Interpolating Data from a Dictionary
	Dictionary Functions and Methods
	Dictionary Formatting
	Ordered Dictionaries
		Sorting Dictionaries
		Python Multi Dictionaries
	Other Sequence Types in Python
	Mutable and Immutable Types in Python
	The type() Function
	Summary
Chapter 5 Introduction to NumPy
	What is NumPy
		Useful NumPy Features
	What are NumPy Arrays?
	Working with Loops
	Appending Elements to Arrays (1)
	Appending Elements to Arrays (2
)
	Multiplying Lists and Arrays
	Doubling the Elements in a List
	Lists and Exponents
	Arrays and Exponents
	Math Operations and Arrays
	Working with “-1” Sub-ranges with Vectors
	Working with “-1” Sub-ranges with Arrays
	Other Useful NumPy Methods
	Arrays and Vector Operations
	NumPy and Dot Products (1)
	NumPy and Dot Products (2
)
	NumPy and the Length of Vectors
	NumPy and Other Operations
	NumPy and the reshape() Method
	Calculating the Mean and Standard Deviation
	Code Sample with Mean and Standard Deviation
		Trimmed Mean and Weighted Mean
	Working with Lines in the Plane (Optional)
	Plotting Randomized Points with NumPy and Matplotlib
	Plotting a Quadratic with NumPy and Matplotlib
	What is Linear Regression?
		What is Multivariate Analysis?
		What about Non-Linear Datasets?
	The MSE (Mean Squared Error) Formula
		Other Error Type
		Non-Linear Least Squares
	Calculating the MSE Manually
	Find the Best-Fitting Line in NumPy
	Calculating MSE by Successive Approximation (1)
	C
alculating MSE by Successive Approximation (2 )
	Google Colaboratory
		Uploading CSV Files in Google Colaboratory
	Summary
Chapter 6 Introduction to Pandas
	What is Pandas?
		Pandas Options and Settings
		Pandas Data Frames
		Data Frames and Data Cleaning Tasks
		Alternatives to Pandas
	A Pandas Data Frame with a NumPy Example
	Describing a Pandas Data Frame
	Pandas Boolean Data Frames
		Transposing a Pandas Data Frame
	Pandas Data Frames and Random Numbers
	Reading CSV Files in Pandas
	The loc() and iloc() Methods in Pandas
	Converting Categorical Data to Numeric Data
	Matching and Splitting Strings in Panda
	Converting Strings to Dates in Pandas
	Merging and Splitting Columns in Pandas
	Combining Pandas Data Frames
	Data Manipulation with Pandas Data Frames (1)
	Data Manipulation with Pandas Data Frames (2
)
	Data Manipulation with Pandas Data Frames (3
)
	Pandas Data Frames and CSV Files
	Managing Columns in Data Frames
		Switching Columns
		Appending Columns
		Deleting Columns
		Inserting Columns
		Scaling Numeric Columns
	Managing Rows in Pandas
		Selecting a Range of Rows in Pandas
		Finding Duplicate Rows in Pandas
		Inserting New Rows in Pandas
	Handling Missing Data in Pandas
		Multiple Types of Missing Values
		Test for Numeric Values in a Column
		Replacing NaN Values in Pandas
	Sorting Data Frames in Pandas
	Working with groupby() in Pandas
	Working with apply() and mapapply() in Pandas
	Handling Outliers in Pandas
	Pandas Data Frames and Scatterplots
	Pandas Data Frames and Simple Statistics
	Aggregate Operations in Pandas Data Frames
	Aggregate Operations with the titanic.csv Dataset
	Save Data Frames as CSV Files and Zip Files
	Pandas Data Frames and Excel Spreadsheets
	Working with JSON-based Data
		Python Dictionary and JSON
		Python, Pandas, and JSON
	Useful One-line Commands in Pandas
	What is Method Chaining?
		Pandas and Method Chaining
	Pandas Profiling
	Summary
Chapter 7 Introduction to R
	What is R?
		Features of R
		Installing R and RStudio
	Variable Names, Operators, and Data Types in R
		Assigning Values to Variables in R
		Operators in R
		Data Types in R
	Working with Strings in R
		Uppercase and Lowercase Strings
		String-Related Tasks
	Working with Vectors in R
		Finding NULL Values in a Vector in R
		Updating NA Values in a Vector in R
		Sorting a Vector of Elements in R
		Working with the Alphabet Variable in R
	Working with Lists in R
	Working with Matrices in R (1)
	Working with Matrices in R (2
)
	Working with Matrices in R (3
)
	Working with Matrices in R (4
)
	Working with Matrices in R (5
)
	Updating Matrix Elements
	Logical Constraints and Matrices
	Working with Matrices in R (6)
	Combining Vectors, Matrices, and Lists in R
	Working with Dates in R
	The seq Function in R
	Basic Conditional Logic
	Compound Conditional Logic
	Working with User Input
	A Try/Catch Block in R
	Linear Regression in R
	Working with Simple Loops in R
	Working with Nested Loops in R
	Working with While Loops in R
	Working with Conditional Logic in R
	Add a Sequence of Numbers in R
	Check if a Number is Prime in R
	Check if Numbers in an Array are Prime in R
	Check for Leap Years in R
	Well-formed Triangle Values in R
	What are Factors in R?
	What are Data Frames in R?
	Working with Data Frames in R (1)
	Working with Data Frames in R (2
)
	Working with Data Frames in R (3
)
	Sort a Data Frame by Column
	Reading Excel Files in R
	Reading SQLITE Tables in R
	Reading Text Files in R
	Saving and Restoring Objects in R
	Data Visualization in R
	Working with Bar Charts in R (1)
	Working with Bar Charts in R (2
)
	Working with Line Graphs in R
	Working with Functions in R
	Math-related Functions in R
	Some Operators and Set Functions in R
	The “Apply Family” of Built-in Functions
	The dplyr Package in R
	The Pipe Operator %>%
	Working with CSV Files in R
	Working with XML in R
	Reading an XML Document into an R Data Frame
	Working with JSON in R
	Reading a JSON File into an R Data Frame
	Statistical Functions in R
	Summary Functions in R
	Defining a Custom Function in R
	Recursion in R
	Calculating Factorial Values in R (Non-recursive)
	Calculating Factorial Values in R (recursive)
	Calculating Fibonacci Numbers in R (Non-recursive)
	Calculating Fibonacci Numbers in R (Recursive)
	Convert a Decimal Integer to a Binary Integer in R
	Calculating the GCD of Two Integers in R
	Calculating the LCM of Two Integers in R
	Summary
Chapter 8 Regular Expressions
	What are Regular Expressions?
	Metacharacters in Python
	Character Sets in Python
		Working with “^” and “\”
	Character Classes in Python
	Matching Character Classes with the re Module
	Using the re.match() Method
	Options for the re.match() Method
	Matching Character Classes with the re.search() Method
	Matching Character Classes with the findAll() Method
		Finding Capitalized Words in a String
	Additional Matching Function for Regular Expressions
	Grouping with Character Classes in Regular Expressions
	Using Character Classes in Regular Expressions
		Matching Strings with Multiple Consecutive Digits
		Reversing Words in Strings
	Modifying Text Strings with the re Module
	Splitting Text Strings with the re.split() Method
	Splitting Text Strings Using Digits and Delimiters
	Substituting Text Strings with the re.sub() Method
	Matching the Beginning and the End of Text Strings
	Compilation Flags
	Compound Regular Expressions
	Counting Character Types in a String
	Regular Expressions and Grouping
	Simple String Matches
	Pandas and Regular Expressions
	Summary
	Exercises
Chapter 9 SQL and NoSQL 337
	What is an RDBMS?
	A Four-Table RDBMS
		The customers Table
		The purchase_orders Table
		The line_items Table
		The item_desc Table
	What is SQL?
		What is DCL?
		What is DDL?
		Delete Vs. Drop Vs. Truncate
		What is DQL?
		What is DML?
		What is TCL?
		Data Types in MySQL
	Working with MySQL
		Logging into MySQL
		Creating a MySQL Database
	Creating and Dropping Tables
		Manually Creating Tables for mytools.com
		Creating Tables via a SQL Script for mytools.com (1
 )
		Creating Tables via a SQL Script for mytools.com (2
)
		Creating Tables from the Command Line
		Dropping Tables via a SQL Script for mytools.com
	Populating Tables with Seed Data
	Populating Tables from Text Files
	Simple SELECT Statements
		Select Statements with a WHERE Clause
		Select Statements with GROUP BY Clause
		Select Statements with a HAVING Clause
	Working with Indexes in SQL
	What are Keys in an RDBMS?
	Aggregate and Boolean Operations in SQL
	Joining Tables in SQL
	Defining Views in MySQL
	Entity Relationships
	One-to-Many Entity Relationships
	Many-to-Many Entity Relationships
	Self-Referential Entity Relationships
	Working with Subqueries in SQL
	Other Tasks in SQL
	Reading MySQL Data from Panda
	Export SQL Data to Excel
	What is Normalization?
	What are Schemas?
	Other RDBMS Topics
	Working with NoSQL
		Create MongoDB Cellphones Collection
		Sample Queries in MongoDB
	Summary
Chapter 10 Data Visualization
	What is Data Visualization?
		Types of Data Visualization
	What is Matplotlib?
	Horizontal Lines in Matplotlib
	Slanted Lines in Matplotlib
	Parallel Slanted Lines in Matplotlib
	A Grid of Points in Matplotlib
	A Dotted Grid in Matplotlib
	Lines in a Grid in Matplotlib
	A Colored Grid in Matplotlib
	A Colored Square in an Unlabeled Grid in Matplotlib
	Randomized Data Points in Matplotlib
	A Histogram in Matplotlib
	A Set of Line Segments in Matplotlib
	Plotting Multiple Lines in Matplotlib
	Trigonometric Functions in Matplotlib
	Display IQ Scores in Matplotlib
	Plot a Best-Fitting Line in Matplotlib
	Introduction to Sklearn (scikit-learn)
	The Digits Dataset in Sklearn
	The Iris Dataset in Sklearn (1)
		Sklearn, Pandas, and the Iris Dataset
	The Iris Dataset in Sklearn (2)
	The Faces Dataset in Sklearn (Optional)
	Working with Seaborn
		Features of Seaborn
	Seaborn Built-in Datasets
	The Iris Dataset in Seaborn
	The Titanic Dataset in Seaborn
	Extracting Data from the Titanic Dataset in Seaborn (1)
	Extracting Data from the Titanic Dataset in Seaborn (2)
	Visualizing a Pandas Dataset in Seaborn
	Data Visualization in Pandas
	What is Bokeh?
	Summary
Index




نظرات کاربران