دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Mirza Rahim Baig, Gururajan Govindan, Vishwesh Ravi Shrimali سری: ISBN (شابک) : 1800560478, 9781800560475 ناشر: Packt Publishing سال نشر: 2021 تعداد صفحات: 400 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 50 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Data Science for Marketing Analytics: A practical guide to forming a killer marketing strategy through data analysis with Python, 2nd Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علم داده برای تجزیه و تحلیل بازاریابی: راهنمای عملی برای تشکیل یک استراتژی بازاریابی قاتل از طریق تجزیه و تحلیل داده ها با پایتون، نسخه دوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برنامه های بازاریابی خود را با جهش از آمار توصیفی ساده در اکسل به تجزیه و تحلیل های پیش بینی پیچیده با زبان برنامه نویسی پایتون شارژ کنید
با این راهنمای عملی علم داده برای کسب و کار، قدرت داده ها را برای رسیدن به اهداف بازاریابی خود آزاد کنید.
این کتاب به شما کمک می کند تا سفر خود را برای تبدیل شدن به یک استاد تجزیه و تحلیل بازاریابی با Python آغاز کنید. شما با مجموعه دادههای مرتبط کار میکنید و مهارتهای عملی خود را با انجام تمرینها و فعالیتهای جذابی که پروژههای تحلیل بازار در دنیای واقعی را شبیهسازی میکنند، ایجاد میکنید.
میآموزید که مانند یک دانشمند داده فکر کنید، مهارتهای حل مسئله خود را ایجاد کنید، و نحوه نگاه کردن به دادهها را به روشهای جدید برای ارائه بینشهای بصری کسبوکار و تصمیمگیری هوشمندانه کشف کنید. دادهها، الگوریتمهای یادگیری ماشین را پیادهسازی میکنید و مدلهایی را برای پیشبینی میسازید. همانطور که روی کتاب کار می کنید، از ابزارهای Python برای تجزیه و تحلیل فروش، تجسم داده های تبلیغات، پیش بینی درآمد، رسیدگی به ریزش مشتریان و اجرای تقسیم بندی مشتری برای درک رفتار استفاده خواهید کرد.
در پایان این کتاب، دانش، مهارت و اعتماد به نفس برای پیاده سازی علم داده و تکنیک های یادگیری ماشین برای درک بهتر داده های بازاریابی خود و بهبود تصمیم گیری های خود را خواهید داشت. دادههای فروش و بازاریابی با استفاده از پانداها
Turbocharge your marketing plans by making the leap from simple descriptive statistics in Excel to sophisticated predictive analytics with the Python programming language
Unleash the power of data to reach your marketing goals with this practical guide to data science for business.
This book will help you get started on your journey to becoming a master of marketing analytics with Python. You'll work with relevant datasets and build your practical skills by tackling engaging exercises and activities that simulate real-world market analysis projects.
You'll learn to think like a data scientist, build your problem-solving skills, and discover how to look at data in new ways to deliver business insights and make intelligent data-driven decisions.
As well as learning how to clean, explore, and visualize data, you'll implement machine learning algorithms and build models to make predictions. As you work through the book, you'll use Python tools to analyze sales, visualize advertising data, predict revenue, address customer churn, and implement customer segmentation to understand behavior.
By the end of this book, you'll have the knowledge, skills, and confidence to implement data science and machine learning techniques to better understand your marketing data and improve your decision-making.
Cover FM Copyright Table of Contents Preface Chapter 1: Data Preparation and Cleaning Introduction Data Models and Structured Data pandas Importing and Exporting Data with pandas DataFrames Viewing and Inspecting Data in DataFrames Exercise 1.01: Loading Data Stored in a JSON File Exercise 1.02: Loading Data from Multiple Sources Structure of a pandas DataFrame and Series Data Manipulation Selecting and Filtering in pandas Creating DataFrames in Python Adding and Removing Attributes and Observations Combining Data Handling Missing Data Exercise 1.03: Combining DataFrames and Handling Missing Values Applying Functions and Operations on DataFrames Grouping Data Exercise 1.04: Applying Data Transformations Activity 1.01: Addressing Data Spilling Summary Chapter 2: Data Exploration and Visualization Introduction Identifying and Focusing on the Right Attributes The groupby( ) Function The unique( ) function The value_counts( ) function Exercise 2.01: Exploring the Attributes in Sales Data Fine Tuning Generated Insights Selecting and Renaming Attributes Reshaping the Data Exercise 2.02: Calculating Conversion Ratios for Website Ads. Pivot Tables Visualizing Data Exercise 2.03: Visualizing Data With pandas Visualization through Seaborn Visualization with Matplotlib Activity 2.01: Analyzing Advertisements Summary Chapter 3: Unsupervised Learning and Customer Segmentation Introduction Segmentation Exercise 3.01: Mall Customer Segmentation – Understanding the Data Approaches to Segmentation Traditional Segmentation Methods Exercise 3.02: Traditional Segmentation of Mall Customers Unsupervised Learning (Clustering) for Customer Segmentation Choosing Relevant Attributes (Segmentation Criteria) Standardizing Data Exercise 3.03: Standardizing Customer Data Calculating Distance Exercise 3.04: Calculating the Distance between Customers K-Means Clustering Exercise 3.05: K-Means Clustering on Mall Customers Understanding and Describing the Clusters Activity 3.01: Bank Customer Segmentation for Loan Campaign Clustering with High-Dimensional Data Exercise 3.06: Dealing with High-Dimensional Data Activity 3.02: Bank Customer Segmentation with Multiple Features Summary Chapter 4: Evaluating and Choosing the Best Segmentation Approach Introduction Choosing the Number of Clusters Exercise 4.01: Data Staging and Visualization Simple Visual Inspection to Choose the Optimal Number of Clusters Exercise 4.02: Choosing the Number of Clusters Based on Visual Inspection The Elbow Method with Sum of Squared Errors Exercise 4.03: Determining the Number of Clusters Using the Elbow Method Activity 4.01: Optimizing a Luxury Clothing Brand's Marketing Campaign Using Clustering More Clustering Techniques Mean-Shift Clustering Exercise 4.04: Mean-Shift Clustering on Mall Customers Benefits and Drawbacks of the Mean-Shift Technique k-modes and k-prototypes Clustering Exercise 4.05: Clustering Data Using the k-prototypes Method Evaluating Clustering Silhouette Score Exercise 4.06: Using Silhouette Score to Pick Optimal Number of Clusters Train and Test Split Exercise 4.07: Using a Train-Test Split to Evaluate Clustering Performance Activity 4.02: Evaluating Clustering on Customer Data The Role of Business in Cluster Evaluation Summary Chapter 5: Predicting Customer Revenue Using Linear Regression Introduction Regression Problems Exercise 5.01: Predicting Sales from Advertising Spend Using Linear Regression Feature Engineering for Regression Feature Creation Data Cleaning Exercise 5.02: Creating Features for Customer Revenue Prediction Assessing Features Using Visualizations and Correlations Exercise 5.03: Examining Relationships between Predictors and the Outcome Activity 5.01: Examining the Relationship between Store Location and Revenue Performing and Interpreting Linear Regression Exercise 5.04: Building a Linear Model Predicting Customer Spend Activity 5.02: Predicting Store Revenue Using Linear Regression Summary Chapter 6: More Tools and Techniques for Evaluating Regression Models Introduction Evaluating the Accuracy of a Regression Model Residuals and Errors Mean Absolute Error Root Mean Squared Error Exercise 6.01: Evaluating Regression Models of Location Revenue Using the MAE and RMSE Activity 6.01: Finding Important Variables for Predicting Responses to a Marketing Offer Using Recursive Feature Selection for Feature Elimination Exercise 6.02: Using RFE for Feature Selection Activity 6.02: Using RFE to Choose Features for Predicting Customer Spend Tree-Based Regression Models Random Forests Exercise 6.03: Using Tree-Based Regression Models to Capture Non-Linear Trends Activity 6.03: Building the Best Regression Model for Customer Spend Based on Demographic Data Summary Chapter 7: Supervised Learning: Predicting Customer Churn Introduction Classification Problems Understanding Logistic Regression Revisiting Linear Regression Logistic Regression Cost Function for Logistic Regression Assumptions of Logistic Regression Exercise 7.01: Comparing Predictions by Linear and Logistic Regression on the Shill Bidding Dataset Creating a Data Science Pipeline Churn Prediction Case Study Obtaining the Data Exercise 7.02: Obtaining the Data Scrubbing the Data Exercise 7.03: Imputing Missing Values Exercise 7.04: Renaming Columns and Changing the Data Type Exploring the Data Exercise 7.05: Obtaining the Statistical Overview and Correlation Plot Visualizing the Data Exercise 7.06: Performing Exploratory Data Analysis (EDA) Activity 7.01: Performing the OSE technique from OSEMN Modeling the Data Feature Selection Exercise 7.07: Performing Feature Selection Model Building Exercise 7.08: Building a Logistic Regression Model Interpreting the Data Activity 7.02: Performing the MN technique from OSEMN Summary Chapter 8: Fine-Tuning Classification Algorithms Introduction Support Vector Machines Intuition behind Maximum Margin Linearly Inseparable Cases Linearly Inseparable Cases Using the Kernel Exercise 8.01: Training an SVM Algorithm Over a Dataset Decision Trees Exercise 8.02: Implementing a Decision Tree Algorithm over a Dataset Important Terminology for Decision Trees Decision Tree Algorithm Formulation Random Forest Exercise 8.03: Implementing a Random Forest Model over a Dataset Classical Algorithms – Accuracy Compared Activity 8.01: Implementing Different Classification Algorithms Preprocessing Data for Machine Learning Models Standardization Exercise 8.04: Standardizing Data Scaling Exercise 8.05: Scaling Data After Feature Selection Normalization Exercise 8.06: Performing Normalization on Data Model Evaluation Exercise 8.07: Stratified K-fold Fine-Tuning of the Model Exercise 8.08: Fine-Tuning a Model Activity 8.02: Tuning and Optimizing the Model Performance Metrics Precision Recall F1 Score Exercise 8.09: Evaluating the Performance Metrics for a Model ROC Curve Exercise 8.10: Plotting the ROC Curve Activity 8.03: Comparison of the Models Summary Chapter 9: Multiclass Classification Algorithms Introduction Understanding Multiclass Classification Classifiers in Multiclass Classification Exercise 9.01: Implementing a Multiclass Classification Algorithm on a Dataset Performance Metrics Exercise 9.02: Evaluating Performance Using Multiclass Performance Metrics Activity 9.01: Performing Multiclass Classification and Evaluating Performance Class-Imbalanced Data Exercise 9.03: Performing Classification on Imbalanced Data Dealing with Class-Imbalanced Data Exercise 9.04: Fixing the Imbalance of a Dataset Using SMOTE Activity 9.02: Dealing with Imbalanced Data Using scikit-learn Summary Appendix Index