ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Data Mining and Predictive Analytics: A Case Study Approach

دانلود کتاب داده کاوی و تجزیه و تحلیل پیش بینی کننده: رویکرد مطالعه موردی

Data Mining and Predictive Analytics: A Case Study Approach

مشخصات کتاب

Data Mining and Predictive Analytics: A Case Study Approach

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781683926757, 2022950710 
ناشر: Mercury Learning and Information 
سال نشر: 2023 
تعداد صفحات: 291 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 40 Mb 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Data Mining and Predictive Analytics: A Case Study Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب داده کاوی و تجزیه و تحلیل پیش بینی کننده: رویکرد مطالعه موردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Acknowledgments
 Chapter 1: Data Mining and Business
 Data Mining Algorithms and Activities
 Data is the New Oil
 Data-Driven Decision-Making
 Business Analytics and Business Intelligence
 Algorithmic Technologies Associated with Data Mining
 Data Mining and Data Warehousing
 Case Study 1.1: Business Applications of Data Mining
 Case A – Classification
 Case B – Regression
 Case C – Anomaly Detection
 Case D – Time Series
 Case E – Clustering
 Reference
 Chapter 2: The Data Mining Process
 Data Mining as a Process
 Exploration
 Analysis
 Interpretation
 Exploitation
 Selecting a Data Mining Process
 The CRISP-DM Process Model
 Business Understanding
 Data Understanding
 Data Preparation
 Modeling
 Evaluation
 Deployment
 Selecting Data Analytics Languages
 The Choices for Languages
 References
 Chapter 3: Framing Analytical Questions
 How Does CRISP-DM Define the Business and Data Understanding Step?
 The World of the Business Data Analyst
 How Does Data Analysis Relate to Business Decision-Making?
 How Do We Frame Analytical Questions?
 What Are the Characteristics of Well-framed Analytical Questions?
 Exercise 3.1 – Framed Questions About the Titanic Disaster
 Case Study 3.1 – The San Francisco Airport Survey
 Case Study 3.2 – Small Business Administration Loans
References
 Chapter 4: Data Preparation
 How Does CRISP-DM Define Data Preparation?
 Steps in Preparing the Data Set for Analysis
 Data Sources and Formats
 What is Data Shaping?
 The Flat-File Format
 Application of Tools for Data Acquisition and Preparation
 Exercise 4.1 – Shaping the Data File
 Exercise 4.2 – Cleaning the Data File
 Ensuring the Right Variables are Included
 Using SQL to Extract the Right Data Set from Data Warehouses
 Case Study 4.1: Cleaning and Shaping the SFO Survey Data Set
 Case Study 4.2: Shaping the SBA Loans Data Set
 Case Study 4.3: Additional SQL Queries
 Reference
 Chapter 5: Descriptive Analysis
 Getting a Sense of the Data Set
 Describe the Data Set
 Explore the Data Set
 Verify the Quality of the Data Set
 Analysis Techniques to Describe the Variables
 Exercise 5.1 – Descriptive Statistics
 Distributions of Numeric Variables
 Correlation
 Exercise 5.2 – Descriptive Analysis of the Titanic Disaster Data
 Case Study 5.1: Describing the SFO Survey Data Set
 Solution Using R
 Solution Using Python
 Case Study 5.2: Describing the SBA Loans Data Set
 Solution Using R
 Solution Using Python
 Reference
 Chapter 6: Modeling
 What is a Model?
 How Does CRISP-DM Define Modeling?
 Selecting the Modeling Technique
 Modeling Assumptions
 Generate Test Design
 Design of Model Testing
 Build the Model
 Parameter Setting
 Models
 Model Assessment
Where Do Models Reside in a Computer?
 The Data Mining Engine
 The Model
 Data Sources and Outputs
 Traditional Data Sources
 Static Data Sources
 Real-Time Data Sources
 Analytic Outputs
 Model Building
 Step 1: Framing Questions
 Step 2: Selecting the Machine
 Step 3: Selecting Known Data
 Step 4: Training the Machine
 Step 5: Testing the Model
 Step 6: Deploying the Model
 Step 7: Collecting New Data
 Step 8: Updating the Model
 Step 9: Learning – Repeat Steps 7 and 8
 Step 10: Recommending Answers to the User
 Reference
 Chapter 7: Predictive Analytics with Regression Models
 What is Supervised Learning?
 Regression to the Mean
 Linear Regression
 Simple Linear Regression
 The R-squared Coefficient
 The Use of the p-value of the Coefficients
 Strength of the Correlation Between Two Variables
 Exercise 7.1 – Using SLR Analysis to Understand Franchise Advertising
 Multivariate Linear Regression
 Preparing to Build the Multivariate Model
 Exercise 7.2 – Using Multivariate Linear Regression to Model Franchise Sales
 Logistic Regression
 What is Logistic Regression?
 Exercise 7.3 – PassClass Case Study
 Multivariate Logistic Regression
 Exercise 7.4 – MLR Used to Analyze the Results of a Database Marketing Initiative
 Where is Logistic Regression Used?
 Comparing Linear and Logistic Regressions for Binary Outcomes
 Case Study 7.1: Linear Regression Using the SFO Survey Data Set
 Solution in R
 Solution in Python
 Case Study 7.2: Linear Regression Using the SBA Loans Data Set
 Solution in R
Solution in Python
 Case Study 7.3: Logistic Regression Using the SFO Survey Data Set
 Solution in R
 Solution in Python
 Case Study 7.4: Logistic Regression Using the SBA Loans Data Set
 Solution in R
 Solution in Python
 Chapter 8: Classification
 Classification with Decision Trees
 Building a Decision Tree
 Exercise 8.1 – The Iris Data Set
 The Problem with Decision Trees
 Classification with Random Forest
 Using a Random Forest Model
 Exercise 8.2 – The Iris Data Set
 Classification with Naïve Bayes
 Exercise 8.3 – The HIKING Data Set
 Computing the Conditional Probabilities
 Case Study 8.1: Classification with the SFO Survey Data Set
 Solution in R
 Solution in Python
 Case Study 8.2: Classification with the SBA Loans Data Set
 Solution in R
 Solution in Python
 Case Study 8.3: Classification with the Florence Nightingale Data Set
 Solution in Python
 Reference
 Chapter 9: Clustering
 What is Unsupervised Machine Learning?
 What is Clustering Analysis?
 Applying Clustering to Old Faithful Eruptions
 Examples of Applications of Clustering Analysis
 A Simple Clustering Example Using Regression
 Hierarchical Clustering
 Applying Hierarchical Clustering to Old Faithful Eruptions
 Exercise 9.1 – Hierarchical Clustering and the Iris Data Set
 K-Means Clustering
 How Does the K-Means Algorithm Compute Cluster Centroids?
 Applying K-Means Clustering to Old Faithful Eruptions
 Exercise 9.2 – K-Means Clustering and the Iris Data Set
 Hierarchical vs. K-Means Clustering
 Case Study 9.1: Clustering with the SFO Survey Data Set
 Solution in R
 Solution in Python
Case Study 9.2: Clustering with the SBA Loans Data Set
 Solution in R
 Solution in Python
 Chapter 10: Time Series Forecasting
 What is a Time Series?
 Time Series Analysis
 Types of Time Series Analysis
 What is Forecasting?
 Exercise 10.1 – Analysis of the US and China GDP Data Set
 Case Studies
 Case Study 10.1: Time Series Analysis of the SFO Survey Data Set
 Solution in Excel
 Case Study 10.2: Time Series Analysis of the SBA Loans Data set
 Solution in R
 Solution in Python
 Case Study 10.3: Time Series Analysis of a Nest Data Set
 Solution in Python
 Reference
 Chapter 11: Feature Selection
 Using the Covariance Matrix
 Factor Analysis
 When to Use Factor Analysis
 First Step in FA – Correlation
 FA for Exploratory Analysis
 Selecting the Number of Factors – The Scree Plot
 Example 11.1: Restaurant Feedback
 Factor Interpretation
 Summary Activities to Perform a Factor Analysis
 Case Study 11.1: Variable Reduction with the SFO Survey Data Set
 Solution in R
 Solution in Python
 Case Study 11.2: Hunting Diamonds
 Solution in R
 Solution in Python
 Chapter 12: Anomaly Detection
 What is an Anomaly?
 What is an Outlier?
 The Case Studies for the Exercises in Anomaly Detection
 Anomaly Detection by Standardization – A Single Numerical Variable
 Exercise 12.1 – Outliers in the Airline Delays Data Set – Z-Score
 Anomaly Detection by Quartiles – Tukey Fences – With a Single Variable
 Comparing Z-scores and Tukey Fences
 Exercise 12.2 – Outliers in the Airline Delays Data Set – Tukey Fences
 Anomaly Detection by Category – A Single Variable
Exercise 12.3 – Outliers in the Airline Delays Data Set – Categorical
 Anomaly Detection by Clustering – Multiple Variables
 Exercise 12.4 – Outliers in the Airline Delays Data Set – Clustering
 Anomaly Detection Using Linear Regression by Residuals – Multiple Variables
 Exercise 12.5 – Outliers in the Airline Delays Data Set – Residuals
 Case Study 12.1: Outliers in the SFO Survey Data Set
 Solution in R
 Solution in Python
 Case Study 12.2: Outliers in the SBA Loans Data Set
 Solution in R
 Solution in Python
 References
 Chapter 13: Text Data Mining
 What is Text Data Mining?
 What are Some Examples of Text-Based Analytical Questions?
 Tools for Text Data Mining
 Sources and Formats of Text Data
 Term Frequency Analysis
 How Does It Apply to Text Business Data Analysis?
 Exercise 13.1 – Case Study Using a Training Survey Data Set
 Word Frequency Analysis Using R
 Keyword Analysis
 Exercise 13.2 – Case Study Using Data Set D: Résumé and Job Description
 Keyword Word Analysis in Voyant
 Term Frequency Analysis in R
 Visualizing Text Data
 Exercise 13.3 – Case Study Using the Training Survey Data Set
 Visualizing the Text Using Excel
 Visualizing the Text Using Voyant
 Visualizing the Text Using R
 Text Similarity Scoring
 What is Text Similarity Scoring?
 Exercise 13.4 – Case Study Using the Occupation Description Data Set
 Analysis Using an Online Text Similarity Scoring Tool
 Similarity Scoring Analysis Using R
 Exercise 13.5 – Résumé and Job Descriptions Similarly Scoring Using R
 Case Study 13.1 – Term Frequency Analysis of Product Reviews
 Term Frequency Analysis Using Voyant
 Term Frequency Analysis Using R
 References
 Chapter 14: Working with Large Data Sets
 Using Sampling to Work with Large Data Files
 Exercise 14.1 – Big Data Analysis
 Case Study 14.1 Using the BankComplaints Big Data File
Exercise 12.3 – Outliers in the Airline Delays Data Set – Categorical
 Anomaly Detection by Clustering – Multiple Variables
 Exercise 12.4 – Outliers in the Airline Delays Data Set – Clustering
 Anomaly Detection Using Linear Regression by Residuals – Multiple Variables
 Exercise 12.5 – Outliers in the Airline Delays Data Set – Residuals
 Case Study 12.1: Outliers in the SFO Survey Data Set
 Solution in R
 Solution in Python
 Case Study 12.2: Outliers in the SBA Loans Data Set
 Solution in R
 Solution in Python
 References
 Chapter 13: Text Data Mining
 What is Text Data Mining?
 What are Some Examples of Text-Based Analytical Questions?
 Tools for Text Data Mining
 Sources and Formats of Text Data
 Term Frequency Analysis
 How Does It Apply to Text Business Data Analysis?
 Exercise 13.1 – Case Study Using a Training Survey Data Set
 Word Frequency Analysis Using R
 Keyword Analysis
 Exercise 13.2 – Case Study Using Data Set D: Résumé and Job Description
 Keyword Word Analysis in Voyant
 Term Frequency Analysis in R
 Visualizing Text Data
 Exercise 13.3 – Case Study Using the Training Survey Data Set
 Visualizing the Text Using Excel
 Visualizing the Text Using Voyant
 Visualizing the Text Using R
 Text Similarity Scoring
 What is Text Similarity Scoring?
 Exercise 13.4 – Case Study Using the Occupation Description Data Set
 Analysis Using an Online Text Similarity Scoring Tool
 Similarity Scoring Analysis Using R
 Exercise 13.5 – Résumé and Job Descriptions Similarly Scoring Using R
 Case Study 13.1 – Term Frequency Analysis of Product Reviews
 Term Frequency Analysis Using Voyant
 Term Frequency Analysis Using R
 References
 Chapter 14: Working with Large Data Sets
 Using Sampling to Work with Large Data Files
 Exercise 14.1 – Big Data Analysis
 Case Study 14.1 Using the BankComplaints Big Data File




نظرات کاربران