ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Data Management, Analytics and Innovation: Proceedings of ICDMAI 2022

دانلود کتاب مدیریت داده، تجزیه و تحلیل و نوآوری: مجموعه مقالات ICDMAI 2022

Data Management, Analytics and Innovation: Proceedings of ICDMAI 2022

مشخصات کتاب

Data Management, Analytics and Innovation: Proceedings of ICDMAI 2022

ویرایش:  
نویسندگان: , , , ,   
سری: Lecture Notes on Data Engineering and Communications Technologies, 137 
ISBN (شابک) : 9811925992, 9789811925993 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 714
[715] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 22 Mb 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Data Management, Analytics and Innovation: Proceedings of ICDMAI 2022 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مدیریت داده، تجزیه و تحلیل و نوآوری: مجموعه مقالات ICDMAI 2022 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مدیریت داده، تجزیه و تحلیل و نوآوری: مجموعه مقالات ICDMAI 2022



این کتاب آخرین یافته‌ها را در زمینه‌های مدیریت داده و محاسبات هوشمند، مدیریت کلان داده، هوش مصنوعی و تجزیه و تحلیل داده‌ها، همراه با پیشرفت‌های فناوری‌های شبکه ارائه می‌کند. این کتاب مجموعه‌ای از مقالات تحقیقاتی بررسی‌شده است که در ششمین کنفرانس بین‌المللی مدیریت داده، تجزیه و تحلیل و نوآوری (ICDMAI 2022)، که به‌طور مجازی در 14 تا 16 ژانویه 2022 برگزار شد، ارائه شده است. به موضوعات پیشرفته و بحث می‌پردازد. چالش ها و راه حل هایی برای توسعه آینده این کتاب با گردآوری مشارکت‌های اصلی و منتشر نشده توسط دانشمندان از سراسر جهان، عمدتاً برای مخاطبان حرفه‌ای از محققان و متخصصان دانشگاه و صنعت در نظر گرفته شده است.


توضیحاتی درمورد کتاب به خارجی

This book presents the latest findings in the areas of data management and smart computing, big data management, artificial intelligence, and data analytics, along with advances in network technologies. The book is a collection of peer-reviewed research papers presented at Sixth International Conference on Data Management, Analytics and Innovation (ICDMAI 2022), held virtually during January 14–16, 2022. It addresses state-of-the-art topics and discusses challenges and solutions for future development. Gathering original, unpublished contributions by scientists from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.



فهرست مطالب

Preface
Contents
About the Editors
Machine Learning
Recognizing Similar Relationships Within Ontology to Fine Tune Ontology
	1 Introduction
	2 Preliminary Concepts
		2.1 Ontology
		2.2 Resource Description Framework (RDF)
		2.3 Concept (in Ontology)
		2.4 Relation/Relationships
		2.5 Word2vec
	3 Related Work
	4 Proposed System: Recognizing Similar Relationships
		4.1 Extraction of Relationship from Ontology
		4.2 Mapping Words to Root Word Using Lemmatization.
		4.3 Applying Word2vec to Find Vectors
		4.4 Cosine Similarity
		4.5 Extraction of Relationship Similarity Matrix
		4.6 Mapping Similarities in Descending Order
		4.7 Applying Algorithm for Recognizing Similar Relationships
	5 Results and Findings
	6 Conclusion
	References
Object Detection Using Peak, Balanced Division Point and Shape Based Features
	1 Introduction
	2 Related Work
	3 Proposed System
		3.1 Image Acquisition and Digitization
		3.2 Preprocessing
		3.3 Boundary Structure Segmentation (BoSS)
		3.4 Feature Extraction
		3.5 Object Classification
		3.6 Object Detection
	4 Classification
	5 Experimental Results
		5.1 Recognition Accuracy Using SVM Kernel
		5.2 Recognition Accuracy Using k-NN Kernel
	6 Conclusion
	References
End to End Agile and Automated Machine Learning Framework for Trustworthy, Reliable and Sustainable Artificial Intelligence
	1 Introduction
	2 Historical Background
	3 Problem Definition
		3.1 Reliability
		3.2 Explainability
		3.3 Safety
		3.4 Legality
		3.5 Accountability
		3.6 Fairness
		3.7 Sustainability
		3.8 Human Centric
	4 Proposed Solution
		4.1 AI/ML Model Development Lifecycle
		4.2 Human Trust Life Cycle
	5 Solution Implementation
		5.1 System Architecture
		5.2 Human Trust Versus Machine Learning Models Life Cycle
	6 Results Evaluation and Comparison with Benchmarks
	7 Conclusion and Future Directions
	References
Automated Structured Data Extraction from Scanned Document Images
	1 Introduction
	2 Related Work/Survey of Literature
	3 Proposed Work
	4 Results and Conclusion
	References
Effective Sentiment Analysis of Bengali Corpus by Using the Machine Learning Approach
	1 Introduction
	2 Related Work
	3 Methodology
		3.1 Workflow
		3.2 Data-Set
		3.3 Preprocessing of Data-Set
		3.4 POS Tagging and TF-IDF Vectorization
		3.5 Train and Test Data-Set
		3.6 Algorithm
		3.7 Implementation of the Classification Model
		3.8 Hardware and Software Used
	4 Result Analysis and Discussion
		4.1 Result
		4.2 Analysis
	5 Conclusion and Future Work
	References
Review on Android Malware Detection System
	1 Introduction
		1.1 Android OS and Security Architecture: [3]
		1.2 Android Malware Families
	2 Malware Analysis
		2.1 Static Malware Detection Technique
		2.2 Dynamic Malware Detection Technique
	3 Machine Learning Based Malware Detection
		3.1 Malware Classification by Machine Learning
		3.2 Malware Feature Extraction
		3.3 Machine Learning and Malware Classification [24]
	4 Existing Literature
		4.1 Malware Detection Approaches
		4.2 Challenges and Findings in Malware Detection Approaches
	5 Evaluation of Malware Detection Approaches
		5.1 Performance Metrics
	6 Conclusion and Future Scope
	References
Hypothesis Testing of Tweet Text Using NLP
	1 Introduction
	2 Literature Survey
	3 Dataset
	4 Proposed Methodology
		4.1 Architecture Diagram
		4.2 Missing Country Extraction
		4.3 Annotation and Classification
		4.4 Data Normality, Hypothesis Testing and Correlation Test
		4.5 Anderson Darling Normality Test
		4.6 Parametric Hypothesis Testing (Student’s t-Test)
		4.7 Non Parametric Hypothesis Testing
		4.8 Correlation Testing
	5 Experimental Study and Result
	6 Conclusion
	References
Forecasting Severe Thunderstorm by Applying SVM Technique on Cloud Imageries
	1 Introduction
	2 Data
	3 Methodology
		3.1 Support Vector Machine
		3.2 Principal Component Analysis
	4 Result
	5 Discussion
	6 Conclusion
	References
Breast Cancer Prediction Using Auto-Encoders
	1 Introduction
		1.1 Contribution
	2 Background and Related Works
		2.1 Breast Wisconsin Cancer Datasets
	3 Proposal
		3.1 Auto-Encoder
	4 Result
	5 Conclusion and Future Work
	References
Ontology-Driven Scientific Literature Classification Using Clustering and Self-supervised Learning
	1 Introduction
	2 Related Works
		2.1 Self-supervised Learning
		2.2 Hierarchically Classifying Documents Using Very Limited Information
	3 Proposed Methodology
		3.1 Meta Data Enrichment and Ontology Construction
		3.2 Feature Extraction
		3.3 Dataset Labeling and Labeling Verification
		3.4 Resampling
		3.5 Comparative Study on the Tri-level Document Classification
	4 Experiment Results and Discussions
		4.1 ZSL Confidence Scores
		4.2 Comparative Study of Word Embedding and Text Classifiers
	5 Conclusion
	References
Modeling and Forecasting Tuberculosis Cases Using Machine Learning and Deep Learning Approaches: A Comparative Study
	1 Introduction
	2 Literature Review
	3 Materials and Methods
		3.1 Machine Learning Methods
		3.2 Deep Learning Methods
	4 Experiments
		4.1 Experimental Setup
		4.2 Dataset Description
		4.3 Data Pre-processing
		4.4 Evaluation Metrics
		4.5 Hyper-Parameters Settings
	5 Results
	6 Discussion
	7 Conclusions
	References
Drone Integrated Detection and Rebarbative System with Variable Frequency for Agricultural Farm Invading Animals
	1 Introduction
	2 Existing Systems
	3 Proposed System
	4 Implementation
	5 Results
	6 Conclusion
	7 Future Scope
	References
Support Vector Machines and Random Forest Classification Models for Identification of Stability in Extrusion Film Casting Process
	1 Introduction
	2 Problem Statement
	3 Constitutive Equation
	4 Data Set Description
	5 Description of the Classification Algorithms
		5.1 Support Vector Machines
		5.2 Random Forest
	6 Simulation Details
	7 SMOTE Algorithm for Oversampling
	8 Results
	9 Discussions
	10 Conclusions
	References
Predicting CO2 Emissions by Vehicles Using Machine Learning
	1 Introduction
	2 Literature Review
	3 Material-Method
		3.1 Dataset Description
		3.2 Exploratory Data Analysis (EDA)
		3.3 Machine Learning Algorithms and Evaluation Metrics
	4 Model Building
	5 Conclusion
	References
Augmented Feature Generation Using Maximum Mutual Information Minimum Correlation
	1 Introduction
	2 Related Work
	3 Preliminaries
		3.1 Composite Feature
		3.2 Augmented Feature Set
		3.3 Mutual Information
		3.4 Correlation Coefficient
	4 Proposed Methodology
		4.1 Stages of MMIMC
		4.2 Algorithm MMIMC (Maximum Mutual Information Minimum Correlation)
		4.3 Case Study
		4.4 Computational Complexity
	5 Methods and Materials
	6 Results and Discussions
		6.1 Comparison of Accuracy of MMIMC with Benchmark and Top k% Original Non-redundant Features
		6.2 Analysis of Results
	7 Conclusion and Future Scope
	References
Impact of Energy Sector on Climate Change in India Using Forecasting Models
	1 Introduction
	2 Literature Review
		2.1 Problem Statement
	3 Materials and Methods
		3.1 Data
		3.2 Methodology and Experimentation
	4 Results
		4.1 ARIMA Forecasting for 2017, 2018, 2019 and 2020
		4.2 ARIMAX Forecasting for 2021, 2022, 2021, 2024 and 2025
	5 Discussion
	6 Conclusion
	References
Towards Efficient Edge Computing Through Adoption of Reinforcement Learning Strategies: A Review
	1 Introduction
		1.1 Brief Background—Reinforcement Learning
		1.2 Intuitions of Reinforcement Learning
		1.3 Edge Computing
		1.4 Space of Reinforcement Learning in Edge Computing Frameworks
	2 Addressing Task Handling Through Reinforcement Learning
		2.1 Resource Allocation and Offloading for Edge Devices
		2.2 Channel Access at Edge Networks
		2.3 Distributed Multi-level Heterogeneous Edge Computing
		2.4 Dynamic Clustering Approach at Edge
		2.5 Power Management
	3 Addressing Quality of Service Through Reinforcement Learning
		3.1 Latency
		3.2 Handling Security Constraints
	4 Future Scope of Research
	5 Conclusion
	References
Rating of Doctor Using Tokenization Mechanism Using Secure Ethereum Blockchain Enabled Platform
	1 Introduction
	2 Blockchain and Related Terminology
		2.1 Ethereum
		2.2 Solidity
	3 Related Works
	4 Proposed System Model
		4.1 Overall System Structure
		4.2 Smart Contract Proposed
	5 Conclusion
	References
Machine Learning Based Earthquake Early Warning (EEW) System: A Case Study of Himalayan Region
	1 Introduction
	2 Data Collection and Preparation
	3 Event Detection Algorithm
	4 EEW System Parameter
	5 Proposed Workflow
		5.1 An Overview
		5.2 Implementation of STA/LTA on Cleaned Prepared Data
		5.3 Obtaining EEW System Parameters Value
		5.4 Calculating Z-Score Value
		5.5 Calculating Pearson Correlation Coefficient
	6 Methodology
	7 Result and Discussion
	8 Conclusion
	References
Topic Modelling Based Semantic Search
	1 Introduction
	2 Method
		2.1 Data Acquisition
		2.2 Data Pre-processing
		2.3 Topic Modelling
		2.4 Nearest Neighbors
	3 Results
		3.1 Topic Modelling Results
		3.2 Nearest or Closest Abstract Results
		3.3 Parallel Experiments and Insights
	4 Discussion
	References
Machine Learning Based Automated Process for Predicting the Anomaly in AIS Data
	1 Introduction
	2 Literature Survey and the Characteristics of AIS Data
		2.1 Literature Survey
		2.2 Characteristics of AIS Data
		2.3 Labelling the Data
	3 Machine Learning Classifiers
		3.1 KNN Classifier
		3.2 Random Forest Classifier
		3.3 Support Vector Machine (SVM) Classifier
	4 Results
	5 Conclusion
	References
A Hybrid Machine Learning Model for Estimation of Obesity Levels
	1 Introduction
	2 Related Works
	3 Preliminaries
		3.1 Data Scaling
		3.2 Feature Selection Methods
		3.3 Multilayer Perceptron
		3.4 XGBoost
	4 Methodology
		4.1 Problem Formulation
		4.2 Proposed Model Architecture
	5 Results and Discussion
		5.1 Experimental Setup and Results
		5.2 Comparison of Results to Those of Previous Works
		5.3 Ablation Study
		5.4 Study Involving COVID-19
	6 Conclusions
	References
Estimation of Data Parameters Using Cluster Optimization
	1 Introduction
	2 Cluster Parameters Using Optimization Procedure
	3 Classifications of Parameters Estimation Using K-Nearest Neighboring
	4 Semi-supervised Learning Using K-NN Classification
	5 Parameter Approximation and Comparison Measures
		5.1 Mean Square Error (MSE)
		5.2 Coefficient of Multiple Determinations (R2)
		5.3 Prediction Error
		5.4 RMSPE (Root Mean Square Prediction Error)
	6 Experimental Result
	7 Conclusion
	References
AI and Deep Learning
Regulations 4.0: Digitally Transforming the Regulatory Space
	1 Introduction
	2 The Challenges in Regulatory Space
	3 Problem Statement
	4 System Overview
	5 Methodology
	6 Conclusion
	References
Speech To Text for Data Entry—Opportunities and Challenges
	1 Introduction
	2 As-Is Date Entry Process and Challenges
	3 Proposed Solution and To-Be Process
	4 Solution Details
		4.1 Uniqueness
		4.2 Technology Stack
		4.3 Potential Benefits
		4.4 Addressed Challenges
		4.5 Challenges Which Could Not Be Addressed
	5 Opportunities in Other Domains
		5.1 Financial Services [7, 8]
		5.2 Healthcare [7, 8]
		5.3 Brand Building/Marketing [7, 8]
	6 Conclusion
	References
A Gamification Architecture for Online Learning Platform Using Neural Network
	1 Introduction
	2 Literature Review
	3 Implementation
	4 Conclusion
	5 Future Work
	References
Literature Review on Sign Language Generation
	1 Introduction
	2 Literature Survey
	3 Discussion
	4 Conclusion
	References
Literature Survey: Indoor Navigation Using Augmented Reality
	1 Introduction
	2 Literature Survey
		2.1 Marker Based Indoor Localization
		2.2 Vision-Based Indoor Localization
		2.3 PDR Based Indoor Localization
		2.4 Positioning Algorithms
	3 Discussion and Summary
	4 Conclusion and Future Scope
	References
Foreign Object Detection on an Assembly Line
	1 Introduction
	2 Literature Review
	3 Purpose
	4 Current Systems and Processes
	5 Methodology
		5.1 Approach 1
		5.2 Approach 2
	6 Conclusion
	References
Inverse Contexture Abstractive Term Frequency Model Using Surf Scale Diffusive Neural Network for Analysis of Fake Social Content in Public Forum
	1 Introduction
	2 Related Work
	3 Materials and Methods
		3.1 Preprocessing Tweet Term Comments
		3.2 Relational Lexical Term Extraction (RLTE)
		3.3 Sarcastic Term Extraction
		3.4 Optimal Rayleigh Distribution
		3.5 Reliable Subjective Influence Score (RSIS)
		3.6 Inverse Contexture Abstractive Term Frequency Model (ICATFM)
		3.7 Surf Scale Diffusive Neural Network (S2DNN)
	4 Result and Discussion
	5 Conclusion
	References
Literature Review on Machine Translation Systems for Sign Language Generation
	1 Introduction
	2 Literature Survey
	3 Discussion
	4 Conclusion
	References
Depression Detection from Twitter Data Using Two Level Multi-modal Feature Extraction
	1 Introduction
	2 Related Work
	3 Proposed Model
		3.1 Data Set Exploration and Preparation
		3.2 Feature Extraction
		3.3 1st Level Classification
		3.4 2nd Level Feature Extraction
		3.5 2nd Level Classification
	4 Experimental Result and Analysis
	5 Conclusion and Future Work
	References
COVID-19 Regulations Check: Social Distancing, People Counting and Mask Wear Check
	1 Introduction
	2 Literature Survey
	3 Problem Statement
	4 Proposed Algorithms
		4.1 Social distancing compliance check
		4.2 People Counting
		4.3 Correct Mask Wear Check
	5 Results and Discussion
		5.1 Social Distancing Compliance Check
		5.2 Counting people
		5.3 Correct Mask Wear Check
	6 Conclusion
	7 Future Scope
	References
Urdu and Hindi Poetry Generation Using Neural Networks
	1 Introduction
	2 Literature Review
	3 Purpose
	4 Current Systems and Processes
	5 Methodology
		5.1 Constraints
		5.2 Corpus Collection Using Data Scraping
		5.3 Data Pre-processing
		5.4 Training a Char-RNN on the Data
		5.5 Output and Front-End
	6 Results
		6.1 Phase One
		6.2 Phase Two
		6.3 Phase Three
		6.4 Sample Output and Validation
	7 Conclusion and Future Work
	References
Implementation of Open Domain Question Answering System
	1 Introduction
	2 Related Work
	3 Dataset
	4 Implementation Overview
	5 Result Analysis
	6 Conclusion
	References
Design and Implementation of Surround View Monitoring System in View of Autonomous Vehicle
	1 Introduction
	2 Literature Survey
	3 Problem Statement
	4 Proposed Algorithms
	5 Experimental Results
	6 Conclusion
	7 Future Scope
	References
Generation of Indian Sign Language Animation from Audio and Video Content Using Natural Language Processing
	1 Introduction
	2 Literature Review
		2.1 Literature Review of Research Papers
		2.2 Literature Review of the Application
	3 Design and Implementation
		3.1 User Input
		3.2 Pre-Processing
		3.3 Processed English Text to ISL Grammar Conversion
		3.4 SiGML File Generation
		3.5 Animation Generation
		3.6 Animation Recording
	4 Results and Discussions
	5 Conclusion
	References
Histogram Based Initial Centroids Selection for K-Means Clustering
	1 Introduction
	2 Related Work
	3 Proposed Methods
		3.1 Pre-processing of Image
		3.2 K-Means Algorithm
		3.3 Histogram of an Image
		3.4 Histogram Based K-Means
		3.5 Equalized Histogram of an Image
		3.6 Equalized Histogram Based K-means
	4 Result and Discussion
		4.1 Performances Analysis
	5 Conclusion
	References
Siamese Network-Based System for Criminal Identification
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	5 Conclusion
	References
Data Storage Management and Innovation
Organization Network Analysis for Study of Employee Techno-Social Connects and Effect of Human Behavior and Organizational Culture on the Underlying Network
	1 Introduction
	2 Survey of Prior Work
	3 Proposed Work Summary
	4 Discussion on Overall Analysis
		4.1 Insights on Organizational Hierarchy and its Impact on Human Behavior
	5 Conclusion
	6 Next Steps
	References
Enabling Technologies and Applications
Sky Computing Smart Locality Aware Approach for Health Analytics
	1 Introduction
	2 Literature Survey
	3 Proposed Model
		3.1 Motivation for Work
		3.2 Query
		3.3 Query Point
		3.4 Data
		3.5 Data Point
		3.6 Data Sets
		3.7 Clusters
		3.8 Data Mining Algorithm
		3.9 Overall Inference or Knowledge
		3.10 Architecture of Model
		3.11 Algorithm
		3.12 Example
	4 Simulation Results
		4.1 Relevance of Fetched Data Sets
		4.2 Query Processing Time
		4.3 Query Processing Time
	5 Conclusion
	6 Future Work
	References
Citation Biases: Detecting Communities from Patterns of Temporal Variation in Journal Citation Networks
	1 Introduction
	2 Literature Survey
	3 Data Description
	4 Methodology
		4.1 JIF Time Series Data Analysis
		4.2 Network Construction
		4.3 Modularity Maximization for Temporal Networks
	5 Results and Analysis
		5.1 Experimental Results of Multi-layered MM Algorithm
		5.2 Defining Communities in Temporal Citation Networks
		5.3 Contribution of Communities in Different Citation Ranges
		5.4 Microscopic Feature Analysis
	6 Conclusion
	Appendix
	References
Enhancing the Performance of Multiple Wi-Fi Network
	1 Introduction
	2 Wireless Network
	3 The Research Method
		3.1 Method 1
		3.2 Method II
		3.3 Method III
	4 Analysis of Methods
		4.1 Method 1
		4.2 Method II
		4.3 Method III
	5 Algorithm Design
	6 Conclusion
	References
ARCaddy: Augmented Reality App Suite for Aircraft Maintenance
	1 Introduction
	2 Aircraft Maintenance
	3 Augmented Reality
		3.1 Augmented Reality Applications
	4 ARCaddy: Implementation
	5 Summary and Conclusion
	References
Meditation Therapy for Stress Management Using Brainwave Computing and Real Time Virtual Reality Feedback
	1 Introduction
	2 Literature Survey
	3 System Overview
	4 Result Analysis
	5 Conclusion
	References
Real Time Carbon Emissions Calculator for Personal Computers
	1 Introduction
	2 Literature Review
	3 Contribution of AI in Climate Deterioration
		3.1 Companies and Their Competition
		3.2 Hyperparameter Optimization
		3.3 New Form of Vehicles
		3.4 Rise in Electronic Systems
		3.5 Fifth Generation Technologies
		3.6 Social Media and Artificial Intelligence
	4 Method and Parameters
		4.1 Method
		4.2 Parameters
	5 Experiments and Results
	6 Conclusion and Future Work
	References
Data Science Techniques for Handling Pandemic
Literature Survey: Navigation System for Visually Impaired People
	1 Introduction
	2 Related Work
		2.1 Voice Navigation
		2.2 Beacons
		2.3 Crowd Estimation and Analysis of Ridership Data
		2.4 General Transit Feed Specification (GTFS)
	3 Discussion and Summary
	4 Conclusion and Future Scope
	References
Design Aspects of a Multi-dimensional Hybrid Analytical Processing System
	1 Introduction
	2 Related Work
	3 The Proposed Study Model and Its Theory
		3.1 The Theory on the Design of a Local DW
		3.2 ROLAP and MOLAP Engines
		3.3 Layered Architecture Style
	4 The Merit of the Proposed Study Model and Its Findings
		4.1 Multi-dimensional Databases to Handle the Large Data
		4.2 Layered Architecture Style for Integration of Components of Data Warehouses
		4.3 Suggestive Functionalities Engine for Quicker Responses
		4.4 PDC Tree Functionalities for Possible Parallel Operations
		4.5 Sample of OLAP Operations (ROLAP, MOLAP and HOLAP)
	5 Conclusion
	References
A Data Science Approach to Evaluate Drug Effectiveness: Case Study of Remdesivir for Covid-19 Patients in India
	1 Introduction
	2 Related Works
	3 Methodology
	4 Data Preparation and Analysis
		4.1 Data Preparation and Analysis
		4.2 Data Characteristics
		4.3 Challenges Faced in Data Collection/Preparation Steps
	5 Exploratory Data Analysis
		5.1 Length of Stay Analysis
	6 Building Machine Learning Model
	7 Conclusions
	References
A Softcomputing Approach for Predicting and Categorising Learner’s Performance Using Fuzzy Model
	1 Introduction
	2 Literature Review
	3 Research Experiment
		3.1 Data Set
	4 Methodology
		4.1 Crisp Value (Data)
		4.2 Fuzzification (Fuzzy Input Value)
		4.3 Linguistic Values
		4.4 Development of Fuzzy Rules and Inference Mechanism
		4.5 Defuzzification of Fuzzy Output
		4.6 Proposed Algorithm
	5 Result and Discussion
		5.1 Null Hypothesis Verification
	6 Conclusion
	References
Author Index




نظرات کاربران