دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2021
نویسندگان: Rupa Mahanti
سری:
ISBN (شابک) : 981163582X, 9789811635823
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 218
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Data Governance and Data Management: Contextualizing Data Governance Drivers, Technologies, and Tools به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حاکمیت داده و مدیریت داده: زمینهسازی محرکها، فناوریها و ابزارهای حاکمیت داده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword Preface Acknowledgments About This Book Contents About the Author Acronyms and Abbreviations List of Figures List of Tables 1 Introduction to Data, Data Governance, and Data Management Abstract 1.1 Evolution of Data 1.2 Data and Its Governance 1.3 Data Governance and Data Management 1.4 Concluding Thoughts Reference 2 Data and Its Governance Abstract 2.1 The Data Deluge 2.2 About Data and the Organization of Data 2.3 Data as an Asset and Governance 2.3.1 Is Data an Asset? 2.4 Data Asset Life Cycle 2.5 Common Problems with Data Not Being Treated as an Asset 2.6 Classification of Data 2.6.1 Entities 2.6.1.1 Master Data 2.6.1.2 Transactional Data 2.6.1.3 Reference Data 2.6.1.4 Metadata 2.6.2 Varieties of Data 2.6.2.1 Structured Data 2.6.2.2 Unstructured Data 2.6.2.3 Semi-structured Data 2.6.3 Acquisition/Creation of Data 2.6.4 Data Domains or Data Subject Areas 2.6.5 Time 2.6.6 Uses of Data 2.6.7 Data Criticality Based on Integrity and Availability 2.6.7.1 Non-critical 2.6.7.2 Critical 2.6.7.3 Mission Critical 2.6.8 Location of Data 2.6.9 The Sensitivity of the Data and the Level of Protection the Data Requires 2.6.9.1 Restricted Data 2.6.9.2 Confidential Data 2.6.9.3 Private or Internal Data 2.6.9.4 Public Data 2.7 Data Quality and Data Quality Dimensions 2.7.1 Data Quality Dimensions 2.8 Need for Good Data Governance 2.9 Informal Versus Formal Data Governance 2.9.1 Warning Signs that Indicate, You Need Formal Data Governance 2.10 Data Governance is not the Same as Data Management or Data Quality 2.10.1 Data Governance and Data Management 2.10.2 Data Governance and Data Quality 2.11 Data Governance Goals 2.12 Data Governance—The Key Elements 2.12.1 People 2.12.2 Processes 2.12.3 Tools and Technology 2.13 Key Data Governance Business Drivers and Uses Cases 2.13.1 Compliance 2.13.2 Improving Customer Satisfaction 2.13.3 Reputation Management 2.13.4 Better Decision Making 2.13.5 Data Security and Privacy 2.13.6 Improving Data Quality 2.13.7 Analytics 2.13.8 Big Data 2.13.9 Revenue Growth 2.13.10 Improving Operational Efficiency 2.13.11 Mergers and Acquisitions 2.13.12 Partnering and Outsourcing 2.14 Key Benefits of Data Governance 2.14.1 Common Understanding of Data 2.14.2 Greater Collaboration 2.14.3 Improved Data Discovery 2.14.4 Increased Confidence in Data 2.14.5 Improved Brand Protection 2.14.6 Improved Decision Making 2.14.7 Competitive Advantage 2.14.8 Improved Data Management 2.14.9 Improved Risk Mitigation 2.14.10 Cost Savings 2.14.11 Support Impact Analysis 2.14.12 Business and IT Partnership 2.15 Concluding Thoughts References 3 Data Governance and Data Management Functions and Initiatives Abstract 3.1 Data Governance and Data Management 3.2 Data Management Functions and Initiatives 3.3 Data Architecture, Data Modeling, Design, and Data Governance 3.4 Data Governance, Data Integration, and Data Interoperability 3.4.1 Stakeholder Engagement and Management 3.4.2 Establish Governance Policies, Processes, and Best Practices 3.4.3 Metadata Management and Data Lineage 3.4.4 Security and Privacy 3.4.5 Data Sharing Agreements 3.4.6 Data Integration Metrics 3.5 Data Governance and Reference Data Management 3.5.1 What is Reference Data? 3.5.2 Reference Data Categories 3.5.2.1 Internal Reference Data 3.5.2.2 External Reference Data 3.5.3 Reference Data Governance 3.6 Data Governance and Master Data Management 3.6.1 Agreement and Management of Critical Master Data Elements 3.6.2 Defining and Enforcing Data Policies, Processes, Rules, and Standards 3.6.3 Roles, Responsibilities, and Accountabilities 3.6.4 Agreement on Metrics 3.6.5 Agreement on All Associated Reference Data 3.7 Data Governance, Data Warehousing, and Business Intelligence 3.8 Data Governance and Data Migration 3.9 Data Governance and Metadata Management 3.10 Data Governance, Document, and Content Management 3.10.1 Document Management 3.10.2 Content Management 3.10.3 Document Management System (DMS) Versus Content Management System (CMS) 3.11 Data Governance and Data Security Management 3.11.1 Define a Data Classification Policy 3.11.1.1 Restricted Data 3.11.1.2 Confidential Data 3.11.1.3 Private or Internal Data 3.11.1.4 Public Data 3.11.2 Discover Sensitive Data, Establish Data Ownership, and Data Stewardship 3.11.3 Classify Data 3.11.4 Use the Data Classification Results to Improve Security and Compliance 3.12 Data Governance, Data Storage, and Operations 3.13 Data Governance and Data Quality Management (DQM) 3.14 Big Data and Data Analytics 3.14.1 What is Big Data? 3.14.2 How is Big Data Different from Data or Traditional Data? 3.14.2.1 Volume 3.14.2.2 Velocity 3.14.2.3 Variety 3.14.3 Data Analytics 3.14.3.1 Descriptive Analytics 3.14.3.2 Diagnostic Analytics 3.14.3.3 Predictive Analytics 3.14.3.4 Prescriptive Analytics 3.15 Big Data, Analytics, Data Lake, and Data Governance 3.16 Concluding Thoughts References 4 Data Governance Technology and Tools Abstract 4.1 Data Governance and Technology 4.2 Data Governance Tools Versus Data Management Tools 4.3 Data Governance Elements That Can Be Supported By Tools 4.3.1 Managing Data Artifacts 4.3.2 Metadata Management 4.3.3 Governance Organizational Structure 4.3.4 Data Security and Privacy 4.3.5 Program Management and Workflow Management 4.3.6 Data Stewardship Activities 4.3.7 Business Alignment 4.3.8 Communication and Collaboration 4.3.9 Data Management Activities and Data Quality 4.3.9.1 Data Profiling 4.3.9.2 Data Cleansing 4.3.9.3 Data Monitoring 4.3.10 Master Data Management (MDM) and Reference Data Management 4.3.11 Data Governance Metrics 4.3.12 Data Policy Management 4.3.13 Data Issue Resolution 4.3.14 Managing Other Artifacts 4.4 Data Governance Tool Readiness, Selection, and Acquisition 4.5 Data Governance Tool Vendors 4.6 Conclusion and Final Thoughts References 5 Data Governance and Data Management—Concluding Thoughts and Way Forward Abstract 5.1 Data and Its Governance 5.2 Data Governance Stakeholders 5.3 Data Governance and Data Management 5.4 Data Governance—The Way Forward References Appendix A: Restricted Data A.1 Payment Card Industry (PCI) Information A.2 Protected Health Information (PHI) A.3 Individually Identifiable Health Information (IIHI) A.4 Electronic Protected Health Information (e-PHI) A.5 Sensitive Personal Identifiable Information (PII) A.6 Personal Data from GDPR Perspective A.7 Personally Identifiable Education Records Appendix B: Glossary of Terms B.1 Asset B.2 Confidential Data B.3 Critical Data B.4 Data B.5 Databases B.6 Data Classification B.7 Data Criticality B.8 Data Domain B.9 Data Governance B.10 Data Lake B.11 Data Management (the Discipline) B.12 Data Management (the Thing) B.13 Database Management System (DBMS) B.14 Data Profiling B.15 Data Quality B.16 Data Quality Dimensions B.17 Database Schema B.18 Dataset B.19 Data Stewardship B.20 Data Warehouse B.21 Datamart B.22 Dimension Modeling B.23 Master Data B.24 Metadata B.25 Mission Critical Data B.26 Non-critical Data B.27 Normalization B.28 Private or Internal Data B.29 Public Data B.30 Reference Data B.31 Relational Database Management System (RDBMS) B.32 Restricted Data B.33 Semi-structured Data B.34 Structured Data B.35 Table B.36 Transactional Data B.37 Unstructured Data Appendix C: Bibliography Index