دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Adi Wijaya
سری:
ISBN (شابک) : 1800561326, 9781800561328
ناشر: Packt Publishing
سال نشر: 2022
تعداد صفحات: 440
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Data Engineering with Google Cloud Platform: A practical guide to operationalizing scalable data analytics systems on GCP به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی داده با پلت فرم Google Cloud: راهنمای عملی برای عملیاتی کردن سیستم های تجزیه و تحلیل داده مقیاس پذیر در GCP نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
خطوط داده های خود را در GCP بسازید و استقرار دهید، تصمیمات معماری کلیدی بگیرید و اعتماد به نفس برای ارتقای شغل خود به عنوان یک مهندس داده به دست آورید
< span>با این کتاب، خواهید فهمید که چگونه پلتفرم ابری بسیار مقیاسپذیر Google (GCP) به مهندسان داده امکان میدهد خطوط لوله داده سرتاسری درست از ذخیره و پردازش دادهها و هماهنگسازی گردش کار تا ارائه دادهها از طریق داشبوردهای تجسم ایجاد کنند.</ span>
با مروری سریع بر مفاهیم بنیادی مهندسی داده شروع کنید، مسئولیت های مختلف یک مهندس داده و اینکه چگونه GCP نقش حیاتی در انجام این مسئولیت ها ایفا می کند را خواهید آموخت. با پیشرفت در فصلها، میتوانید از محصولات GCP برای ایجاد یک انبار داده نمونه با استفاده از Cloud Storage و BigQuery و یک دریاچه داده با استفاده از Dataproc استفاده کنید. این کتاب به تدریج شما را از طریق عملیات هایی مانند جذب داده ها، پاکسازی داده ها، تبدیل و ادغام داده ها با منابع دیگر می برد. شما یاد خواهید گرفت که چگونه IAM را برای مدیریت داده طراحی کنید، خطوط لوله ML را با Vertex AI مستقر کنید، از مدل های GCP از پیش ساخته شده به عنوان یک سرویس استفاده کنید، و داده ها را با Google Data Studio تجسم کنید تا گزارش های قانع کننده بسازید. در نهایت، نکاتی در مورد چگونگی ارتقای شغل خود به عنوان مهندس داده، شرکت در آزمون گواهینامه مهندس داده حرفه ای و آماده شدن برای تبدیل شدن به یک متخصص در مهندسی داده با GCP خواهید یافت.
در پایان این کتاب مهندسی داده، مهارتهایی را برای انجام وظایف مهندسی دادههای اصلی و ایجاد خطوط لوله داده ETL کارآمد با GCP ایجاد خواهید کرد.
این این کتاب برای مهندسان داده، تحلیلگران داده و هر کسی که به دنبال طراحی و مدیریت خطوط لوله پردازش داده با استفاده از GCP است است. اگر برای شرکت در آزمون مهندس داده حرفه ای گوگل آماده می شوید، این کتاب برای شما مفید خواهد بود. درک سطح مبتدی از علم داده، زبان برنامه نویسی پایتون و دستورات لینوکس ضروری است. به طور کلی درک اولیه از پردازش داده و رایانش ابری به شما کمک می کند تا از این کتاب بهترین استفاده را ببرید.
Build and deploy your own data pipelines on GCP, make key architectural decisions, and gain the confidence to boost your career as a data engineer
With this book, you'll understand how the highly scalable Google Cloud Platform (GCP) enables data engineers to create end-to-end data pipelines right from storing and processing data and workflow orchestration to presenting data through visualization dashboards.
Starting with a quick overview of the fundamental concepts of data engineering, you'll learn the various responsibilities of a data engineer and how GCP plays a vital role in fulfilling those responsibilities. As you progress through the chapters, you'll be able to leverage GCP products to build a sample data warehouse using Cloud Storage and BigQuery and a data lake using Dataproc. The book gradually takes you through operations such as data ingestion, data cleansing, transformation, and integrating data with other sources. You'll learn how to design IAM for data governance, deploy ML pipelines with the Vertex AI, leverage pre-built GCP models as a service, and visualize data with Google Data Studio to build compelling reports. Finally, you'll find tips on how to boost your career as a data engineer, take the Professional Data Engineer certification exam, and get ready to become an expert in data engineering with GCP.
By the end of this data engineering book, you'll have developed the skills to perform core data engineering tasks and build efficient ETL data pipelines with GCP.
This book is for data engineers, data analysts, and anyone looking to design and manage data processing pipelines using GCP. You'll find this book useful if you are preparing to take Google's Professional Data Engineer exam. Beginner-level understanding of data science, the Python programming language, and Linux commands is necessary. A basic understanding of data processing and cloud computing, in general, will help you make the most out of this book.
Cover Title page Copyright and Credits Contributors Table of Contents Preface Section 1: Getting Started with Data Engineering with GCP Chapter 1: Fundamentals of Data Engineering Understanding the data life cycle Understanding the need for a data warehouse Knowing the roles of a data engineer before starting Data engineer versus data scientist The focus of data engineers Foundational concepts for data engineering ETL concept in data engineering The difference between ETL and ELT What is NOT big data? A quick look at how big data technologies store data A quick look at how to process multiple files using MapReduce Summary Exercise See also Chapter 2: Big Data Capabilities on GCP Technical requirements Understanding what the cloud is The difference between the cloud and non-cloud era The on-demand nature of the cloud Getting started with Google Cloud Platform Introduction to the GCP console Practicing pinning services Creating your first GCP project Using GCP Cloud Shell A quick overview of GCP services for data engineering Understanding the GCP serverless service Service mapping and prioritization The concept of quotas on GCP services User account versus service account Summary Section 2: Building Solutions with GCP Components Chapter 3: Building a Data Warehouse in BigQuery Technical requirements Introduction to Google Cloud Storage and BigQuery BigQuery data location Introduction to the BigQuery console Creating a dataset in BigQuery using the console Loading a local CSV file into the BigQuery table Using public data in BigQuery Data types in BigQuery compared to other databases Timestamp data in BigQuery compared to other databases Preparing the prerequisites before developing our data warehouse Step 1: Access your Cloud shell Step 2: Check the current setup using the command line Step 3: The gcloud init command Step 4: Download example data from Git Step 5: Upload data to GCS from Git Practicing developing a data warehouse Data warehouse in BigQuery – Requirements for scenario 1 Steps and planning for handling scenario 1 Data warehouse in BigQuery – Requirements for scenario 2 Steps and planning for handling scenario 2 Summary Exercise – Scenario 3 See also Chapter 4: Build Orchestration for Batch Data Loading Using Cloud Composer Technical requirements Introduction to Cloud Composer Understanding the working of Airflow Provisioning Cloud Composer in a GCP project Exercise: Build data pipeline orchestration using Cloud Composer Level 1 DAG – Creating dummy workflows Level 2 DAG – Scheduling a pipeline from Cloud SQL to GCS and BigQuery datasets Level 3 DAG – Parameterized variables Level 4 DAG – Guaranteeing task idempotency in Cloud Composer Level 5 DAG – Handling late data using a sensor Summary Chapter 5: Building a Data Lake Using Dataproc Technical requirements Introduction to Dataproc A brief history of the data lake and Hadoop ecosystem A deeper look into Hadoop components How much Hadoop-related knowledge do you need on GCP? Introducing the Spark RDD and the DataFrame concept Introducing the data lake concept Hadoop and Dataproc positioning on GCP Exercise – Building a data lake on a Dataproc cluster Creating a Dataproc cluster on GCP Using Cloud Storage as an underlying Dataproc file system Exercise: Creating and running jobs on a Dataproc cluster Preparing log data in GCS and HDFS Developing Spark ETL from HDFS to HDFS Developing Spark ETL from GCS to GCS Developing Spark ETL from GCS to BigQuery Understanding the concept of the ephemeral cluster Practicing using a workflow template on Dataproc Building an ephemeral cluster using Dataproc and Cloud Composer Summary Chapter 6: Processing Streaming Data with Pub/Sub and Dataflow Technical requirements Processing streaming data Streaming data for data engineers Introduction to Pub/Sub Introduction to Dataflow Exercise – Publishing event streams to cloud Pub/Sub Creating a Pub/Sub topic Creating and running a Pub/Sub publisher using Python Creating a Pub/Sub subscription Exercise – Using Cloud Dataflow to stream data from Pub/Sub to GCS Creating a HelloWorld application using Apache Beam Creating a Dataflow streaming job without aggregation Creating a streaming job with aggregation Summary Chapter 7: Visualizing Data for Making Data-Driven Decisions with Data Studio Technical requirements Unlocking the power of your data with Data Studio From data to metrics in minutes with an illustrative use case Understanding what BigQuery INFORMATION_SCHEMA is Exercise – Exploring the BigQuery INFORMATION_SCHEMA table using Data Studio Exercise – Creating a Data Studio report using data from a bike-sharing data warehouse Understanding how Data Studio can impact the cost of BigQuery What kind of table could be 1 TB in size? How can a table be accessed 10,000 times in a month? How to create materialized views and understanding how BI Engine works Understanding BI Engine Summary Chapter 8: Building Machine Learning Solutions on Google Cloud Platform Technical requirements A quick look at machine learning Exercise – practicing ML code using Python Preparing the ML dataset by using a table from the BigQuery public dataset Training the ML model using Random Forest in Python Creating Batch Prediction using the training dataset's output The MLOps landscape in GCP Understanding the basic principles of MLOps Introducing GCP services related to MLOps Exercise – leveraging pre-built GCP models as a service Uploading the image to a GCS bucket Creating a detect text function in Python Exercise – using GCP in AutoML to train an ML model Exercise – deploying a dummy workflow with Vertex AI Pipeline Creating a dedicated regional GCS bucket Developing the pipeline on Python Monitoring the pipeline on the Vertex AI Pipeline console Exercise – deploying a scikit-learn model pipeline with Vertex AI Creating the first pipeline, which will result in an ML model file in GCS Running the first pipeline in Vertex AI Pipeline Creating the second pipeline, which will use the model file from the prediction results as a CSV file in GCS Running the second pipeline in Vertex AI Pipeline Summary Section 3: Key Strategies for Architecting Top-Notch Data Pipelines Chapter 9: User and Project Management in GCP Technical requirements Understanding IAM in GCP Planning a GCP project structure Understanding the GCP organization, folder, and project hierarchy Deciding how many projects we should have in a GCP organization Controlling user access to our data warehouse Use-case scenario – planninga BigQuery ACL on an e-commerce organization Column-level security in BigQuery Practicing the concept of IaC using Terraform Exercise – creating and running basic Terraform scripts Self-exercise – managing a GCP project and resources using Terraform Summary Chapter 10: Cost Strategy in GCP Technical requirements Estimating the cost of your end-to-end data solution in GCP Comparing BigQuery on-demand and flat-rate Example – estimating data engineering use case Tips for optimizing BigQuery using partitioned and clustered tables Partitioned tables Clustered tables Exercise – optimizing BigQuery on-demand cost Summary Chapter 11: CI/CD on Google Cloud Platform for Data Engineers Technical requirements Introduction to CI/CD Understanding the data engineer's relationship with CI/CD practices Understanding CI/CD components with GCP services Exercise – implementing continuous integration using Cloud Build Creating a GitHub repository using Cloud Source Repository Developing the code and Cloud Build scripts Creating the Cloud Build Trigger Pushing the code to the GitHub repository Exercise – deploying Cloud Composer jobs using Cloud Build Preparing the CI/CD environment Preparing the cloudbuild.yaml configuration file Pushing the DAG to our GitHub repository Checking the CI/CD result in the GCS bucket and Cloud Composer Summary Further reading Chapter 12: Boosting Your Confidence as a Data Engineer Overviewing the Google Cloud certification Exam preparation tips Extra GCP services material Quiz – reviewing all the concepts you've learned about Questions Answers The past, present, and future of Data Engineering Boosting your confidence and final thoughts Summary Index Other Books You May Enjoy