ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Data Cleaning and Exploration with Machine Learning: Get to grips with machine learning techniques to achieve sparkling-clean data quickly

دانلود کتاب پاکسازی و کاوش داده ها با یادگیری ماشینی: با تکنیک های یادگیری ماشینی آشنا شوید تا به سرعت به داده های تمیز و درخشان برسید

Data Cleaning and Exploration with Machine Learning: Get to grips with machine learning techniques to achieve sparkling-clean data quickly

مشخصات کتاب

Data Cleaning and Exploration with Machine Learning: Get to grips with machine learning techniques to achieve sparkling-clean data quickly

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 1803241675, 9781803241678 
ناشر: Packt Publishing 
سال نشر: 2022 
تعداد صفحات: 542 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 Mb 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Data Cleaning and Exploration with Machine Learning: Get to grips with machine learning techniques to achieve sparkling-clean data quickly به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پاکسازی و کاوش داده ها با یادگیری ماشینی: با تکنیک های یادگیری ماشینی آشنا شوید تا به سرعت به داده های تمیز و درخشان برسید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پاکسازی و کاوش داده ها با یادگیری ماشینی: با تکنیک های یادگیری ماشینی آشنا شوید تا به سرعت به داده های تمیز و درخشان برسید




توضیحاتی درمورد کتاب به خارجی

Explore supercharged machine learning techniques to take care of your data laundry loads Key Features: Learn how to prepare data for machine learning processes Understand which algorithms are based on prediction objectives and the properties of the data Explore how to interpret and evaluate the results from machine learning Book Description: Many individuals who know how to run machine learning algorithms do not have a good sense of the statistical assumptions they make and how to match the properties of the data to the algorithm for the best results. As you start with this book, models are carefully chosen to help you grasp the underlying data, including in-feature importance and correlation, and the distribution of features and targets. The first two parts of the book introduce you to techniques for preparing data for ML algorithms, without being bashful about using some ML techniques for data cleaning, including anomaly detection and feature selection. The book then helps you apply that knowledge to a wide variety of ML tasks. You\'ll gain an understanding of popular supervised and unsupervised algorithms, how to prepare data for them, and how to evaluate them. Next, you\'ll build models and understand the relationships in your data, as well as perform cleaning and exploration tasks with that data. You\'ll make quick progress in studying the distribution of variables, identifying anomalies, and examining bivariate relationships, as you focus more on the accuracy of predictions in this book. By the end of this book, you\'ll be able to deal with complex data problems using unsupervised ML algorithms like principal component analysis and k-means clustering. What You Will Learn: Explore essential data cleaning and exploration techniques to be used before running the most popular machine learning algorithms Understand how to perform preprocessing and feature selection, and how to set up the data for testing and validation Model continuous targets with supervised learning algorithms Model binary and multiclass targets with supervised learning algorithms Execute clustering and dimension reduction with unsupervised learning algorithms Understand how to use regression trees to model a continuous target Who this book is for: This book is for professional data scientists, particularly those in the first few years of their career, or more experienced analysts who are relatively new to machine learning. Readers should have prior knowledge of concepts in statistics typically taught in an undergraduate introductory course as well as beginner-level experience in manipulating data programmatically.



فهرست مطالب

Cover
Title page
Copyright and Credits,
Contributors
Table of Contents
Preface
Section 1 – Data Cleaning and Machine Learning Algorithms
Chapter 1: Examining the Distribution of Features and Targets
	Technical requirements
	Subsetting data
	Generating frequencies for categorical features
	Generating summary statistics for continuous and discrete features
	Identifying extreme values and outliers in univariate analysis
	Using histograms, boxplots, and violin plots to examine the distribution of features
		Using histograms
		Using boxplots
		Using violin plots
	Summary
Chapter 2: Examining Bivariate and Multivariate Relationships between Features and Targets
	Technical requirements
	Identifying outliers and extreme values in bivariate relationships
	Using scatter plots to view bivariate relationships between continuous features
	Using grouped boxplots to view bivariate relationships between continuous and categorical features
	Using linear regression to identify data points with significant influence
	Using K-nearest neighbors to find outliers
	Using Isolation Forest to find outliers
	Summary
Chapter 3: Identifying and Fixing Missing Values
	Technical requirements
	Identifying missing values
	Cleaning missing values
	Imputing values with regression
	Using KNN imputation
	Using random forest for imputation
	Summary
Section 2 – Preprocessing, Feature Selection, and Sampling
Chapter 4: Encoding, Transforming, and Scaling Features
	Technical requirements
	Creating training datasets and avoiding data leakage
	Removing redundant or unhelpful features
	Encoding categorical features
		One-hot encoding
		Ordinal encoding
	Encoding categorical features with medium or high cardinality
		Feature hashing
	Using mathematical transformations
	Feature binning
		Equal-width and equal-frequency binning
		K-means binning
	Feature scaling
	Summary
Chapter 5: Feature Selection
	Technical requirements
	Selecting features for classification models
		Mutual information classification for feature selection with a categorical target
		ANOVA F-value for feature selection with a categorical target
	Selecting features for regression models
		F-tests for feature selection with a continuous target
		Mutual information for feature selection with a continuous target
	Using forward and backward feature selection
		Using forward feature selection
		Using backward feature selection
	Using exhaustive feature selection
	Eliminating features recursively in a regression model
	Eliminating features recursively in a classification model
	Using Boruta for feature selection
	Using regularization and other embedded methods
		Using L1 regularization
		Using a random forest classifier
	Using principal component analysis
	Summary
Chapter 6: Preparing for Model Evaluation
	Technical requirements
	Measuring accuracy, sensitivity, specificity, and precision for binary classification
	Examining CAP, ROC, and precision-sensitivity curves for binary classification
		Constructing CAP curves
		Plotting a receiver operating characteristic (ROC) curve
		Plotting precision-sensitivity curves
	Evaluating multiclass models
	Evaluating regression models
	Using K-fold cross-validation
	Preprocessing data with pipelines
	Summary
Section 3 – Modeling Continuous Targets with Supervised Learning
Chapter 7: Linear Regression Models
	Technical requirements
	Key concepts
		Key assumptions of linear regression models
		Linear regression and ordinary least squares
	Linear regression and gradient descent
	Using classical linear regression
		Pre-processing the data for our regression model
		Running and evaluating our linear model
		Improving our model evaluation
	Using lasso regression
		Tuning hyperparameters with grid searches
	Using non-linear regression
	Regression with gradient descent
	Summary
Chapter 8: Support Vector Regression
	Technical requirements
	Key concepts of SVR
		Nonlinear SVR and the kernel trick
	SVR with a linear model
	Using kernels for nonlinear SVR
	Summary
Chapter 9: K-Nearest Neighbors, Decision Tree, Random Forest, and Gradient Boosted Regression
	Technical requirements
	Key concepts for K-nearest neighbors regression
	K-nearest neighbors regression
	Key concepts for decision tree and random forest regression
		Using random forest regression
	Decision tree and random forest regression
		A decision tree example with interpretation
		Building and interpreting our actual model
		Random forest regression
	Using gradient boosted regression
	Summary
Section 4 – Modeling Dichotomous and Multiclass Targets with Supervised Learning
Chapter 10: Logistic Regression
	Technical requirements
	Key concepts of logistic regression
		Logistic regression extensions
	Binary classification with logistic regression
		Evaluating a logistic regression model
	Regularization with logistic regression
	Multinomial logistic regression
	Summary
Chapter 11: Decision Trees and Random Forest Classification
	Technical requirements
	Key concepts
		Using random forest for classification
		Using gradient-boosted decision trees
	Decision tree models
	Implementing random forest
	Implementing gradient boosting
	Summary
Chapter 12: K-Nearest Neighbors for Classification
	Technical requirements
	Key concepts of KNN
	KNN for binary classification
	KNN for multiclass classification
		KNN for letter recognition
	Summary
Chapter 13: Support Vector Machine Classification
	Technical requirements
	Key concepts for SVC
		Nonlinear SVM and the kernel trick
		Multiclass classification with SVC
	Linear SVC models
	Nonlinear SVM classification models
	SVMs for multiclass classification
	Summary
Chapter 14: Naïve Bayes Classification
	Technical requirements
	Key concepts
	Naïve Bayes classification models
	Naïve Bayes for text classification
	Summary
Section 5 – Clustering and Dimensionality Reduction with Unsupervised Learning
Chapter 15: Principal Component Analysis
	Technical requirements
	Key concepts of PCA
	Feature extraction with PCA
	Using kernels with PCA
	Summary
Chapter 16: K-Means and DBSCAN Clustering
	Technical requirements
	The key concepts of k-means and DBSCAN clustering
	Implementing k-means clustering
	Implementing DBSCAN clustering
	Summary
Index
About Packt
Other Books You May Enjoy




نظرات کاربران