ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Data Analytics in Marketing, Entrepreneurship, and Innovation

دانلود کتاب تجزیه و تحلیل داده ها در بازاریابی، کارآفرینی و نوآوری

Data Analytics in Marketing, Entrepreneurship, and Innovation

مشخصات کتاب

Data Analytics in Marketing, Entrepreneurship, and Innovation

دسته بندی: پایگاه داده ها
ویرایش:  
نویسندگان:   
سری: Data Analytics Applications 
ISBN (شابک) : 0367184834, 9780367184834 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 193 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 30,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Data Analytics in Marketing, Entrepreneurship, and Innovation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تجزیه و تحلیل داده ها در بازاریابی، کارآفرینی و نوآوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تجزیه و تحلیل داده ها در بازاریابی، کارآفرینی و نوآوری


توضیحاتی درمورد کتاب به خارجی

Innovation based in data analytics is a contemporary approach to developing empirically supported advances that encourage entrepreneurial activity inspired by novel marketing inferences. Data Analytics in Marketing, Entrepreneurship, and Innovation covers techniques, processes, models, tools and practices for creating business opportunities through data analytics. It features case studies that provide realistic examples of applications. This multifaceted examination of data analytics looks at: Business analytics Applying predictive analytics Using discrete choice analysis for decision-making Marketing and customer analytics Developing new products Technopreneurship Disruptive versus incremental innovation The book gives researchers and practitioners insight into how data analytics is used in the areas of innovation, entrepreneurship, and marketing. Innovation analytics helps identify opportunities of developing new products and services as well as improving existing methods of product manufacturing and service delivery. Entrepreneurial analytics facilitates the transformation of innovative ideas into strategy and helps entrepreneurs make critical decisions based on data-driven techniques. Marketing analytics is used in collecting, managing, assessing, and analyzing marketing data to predict trends, investigate customer preferences, and launch campaigns.



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Table of Contents
Editors
Contributors
1 Business Analytics: Through SIoT and SIoV
	Introduction
	Background
		Benefits and Advantages
		Safety Management
		Traffic Control and Convenience
		Productivity
		Commercialization
		Issues, Controversies, Problems
	Information Management in SIoVs
	Solutions and Recommendations
	Future Research Directions
	Conclusion
	References
2 Innovation Analytics
	Introduction
	Scope of Innovation Analytics
	Managers and Analytics Applications
	Diffusion of Innovation Analysis—Creating the Environment
	The Cases of Transformation for the Digital Future
		Netflix Innovation Analytics
		Emirates Airlines Innovation Analytics (Marketing Techniques)
		Amazon and Souq.com Innovation Analytics (Customers Database)
		Airbnb Innovation Analytics (New Product Development)
		Alibaba Strategy (Investing in People Knowledge)
	References
3 Business Predictive Analytics: Tools and Technologies
	Introduction
		Learning Outcomes
	Business Intelligence (BI) Software
		Functionality
		Weaknesses
		Intended Audience
	Open-Source Analytics Tools
		Functionality
		Weaknesses
		Intended Audience
	Proprietary Analytics Tools
		Functionality
		Weaknesses
		Intended Audience
	The Right Tool for the Job
	Case Study: Microsoft Power BI and Football Attendance
		Getting Started with Football Attendance Data
		Introducing Microsoft Power BI
		Importing Data
		Creating a Visual
		Creating a Filter
		Club Performance and Attendance
		Linking Data
		Looking for Relationships.
		Debriefing
	Problem Set
	Bibliography
4 Hospitality Analytics: Use of Discrete Choice Analysis for Decision Support
	Introduction
	Literature Review
		Foundations of Consumer Research: Cognitive Approach
		Behavioural Decision Theory
			Theories of Choice
			The Alternatives
			Decision Rules
		Past Research on Restaurant Attributes
		Ascertaining Attribute Importance
			Challenges for Ascertaining Importance
			Conjoint Analysis or Discrete Choice Analysis
			Conjoint Analysis in Restaurant Attributes Research
	Research Design
		Preliminary Considerations
		Discrete Choice Experiments
		Sampling Strategy
		Recruitment of Participants, Pilot Study and Final Sample
		The Research Instrument
		Screening Section
		Choice Tournament
		Counting Analysis for ACBC
		HB Analysis: Calculation of Utilities and Importances
		HB with Covariates
	Results and Discussion
		An Outline of the Different Tasks (Sections)
		Fixed Attributes
		Optional Attributes
		Average Importances
		HB Analysis with Covariates
		Difference in Levels of Attributes for Every Occasion
	Conclusions
	Implications for the Restaurant Industry
	Reflections on Limitations of This Research
	References
5 Data Analytics in Marketing and Customer Analytics
	Introduction
		Chapter Objectives and Learning Outcomes
		Definitions of Data Analytics, Business Analytics, Marketing and Marketing Management, Marketing Analytics, Customers and Consumers, Customer Analytics
			Data Analytics
			Business Analytics
			Marketing and Marketing Management
			Customer and Consumer
		Marketing Analytics and Its Significance
		Customer Analytics and Its Role
	The Marketing Management Tasks and Process
		Tasks of Marketing Management
		Process of Marketing Management
			Marketing Research
			Segmentation, Targeting, Differentiation, and Positioning (STD&P)
			Marketing Mix (4Ps and 7Ps) Including the Updated
			Marketing Implementation
			Marketing Evaluation and Control
	Data Analytics in Marketing
		Data Preprocessing
		Data Modeling
	Customer Analytics
	Chapter Conclusions and Implications
	Acknowledgments
	References
6 Marketing Analytics
	Introduction
	Insights from a Survey of Small and Medium Enterprises (SMEs)from the UK's East Midlands Region
	The Paradox of the Perceived Impact of Marketing Analytics vs. Funding
	Need for an Overarching Strategy for Marketing Analytics
	The Historical Use of Metrics and Analytics in Marketing
	Availability of Marketing Analytic Skills Specifically and Analytics Skills in General
	Prevalence of Marketing Analytics Curricula in Business and Management Education
	Data Privacy vs. Analytics
	Data Availability vs. Data Quality
	Accessibility of Paid Professional Analytics
	The Future of Marketing Analytics
	The Typology of Marketing Analytics – Laying the Foundation
	Overarching Strategy/Vision/Leadership
	Resources/Competency/Capacity/Tools
	Data Availability vs. Data Quality
	Context
	Meaning and Marketing Intelligence
	Conclusion
	References
7 Big Data Analytics
	Characteristics of Big Data
	Big data in Fighting COVID-19
	Big Data in Artificial Intelligence
	Big Data in Social Media and Internet of Things
	Big Data in Customer Interactions
	Big Data in Data Science
	References
8 New Product Development and Entrepreneurship Analytics
	Introduction
	The Concepts of New Product and New Product Development
	Classification of New Products
		New-to-the-World Products
		New Product Lines
		Additions to Existing Lines
		Improvements and Revisions to Existing Products
		Cost Reductions
		Repositioning
	New Product Development Process
		Idea Generation Stage
		Idea Screening Stage
		Concept Development and Testing Stage
			Concept Development
			Concept Testing
			Marketing Strategy Development Stage.
			Business Analysis Stage
			Product Development Stage
			Test Marketing Stage
			Commercialization Stage
	Product Development Analytics.
	Predictive Analytics in Product Development
	Entrepreneurship Analytics
	Analytics for Start-up Entrepreneurs
		Choose the Right Analytics Team
		Collect the Right Data
		Make Key Technology Decisions Early
		Measure Your Results
		Find the Supportive Investors
		Growth Hacking for Start-ups
		Conclusion
	References
9 Predictive Learning Analytics in Higher Education
	Section 1: Introduction
	Section 2: Prospects and Challenges of Predictive Analytics
		Prospects
		Challenges
	Section 3: Ethical Framework and Considerations for Predictive Analytics in Higher Education
	Section 4: The Application of Predictive Analytics in Higher Education
		Student Academic Advising
		Adaptive Learning
		Mini-Case Study: Intellipath at Colorado Technical University
		Management of Student Enrolment
		Student Academic Performance
		Predictive Analytics for Curriculum Internationalization
	Section 5: Case Studies of Predictive Learning Analytics in Higher Education Management
		Introduction
		Predictive Analytics in Georgia State and Kennesaw State Universities
		Predictive Analytics at Mount St Mary's University
	References
Index




نظرات کاربران