دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: 2nd نویسندگان: Serge Lang سری: Graduate Texts in Mathematics 121 ISBN (شابک) : 0387966714, 9780387966717 ناشر: Springer سال نشر: 1990 تعداد صفحات: 454 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Cyclotomic Fields I and II به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زمینه های سیکلوتومی 1 و 2 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کار کومر در زمینه های سیکلوتومیک راه را برای توسعه نظریه اعداد جبری به طور کلی توسط ددکیند، وبر، هنسل، هیلبرت، تاکاگی، آرتین و دیگران هموار کرد. با این حال، موفقیت این نظریه عمومی تمایل به پنهان کردن حقایق خاص اثبات شده توسط کومر در مورد میدانهای سیکلوتومیک دارد که عمیقتر از نظریه عمومی هستند. به نظر می رسد برای مدت طولانی در قرن بیستم، این جنبه از کار کومر تا حد زیادی فراموش شده است، به جز چند مقاله، که در میان آنها می توان به مقالات پولاکزک [Po]، آرتین هاسه [A-H] و Vandiver [Va] اشاره کرد. در اواسط دهه 1950، تئوری میدان های سیکلوتومیک دوباره توسط ایواساوا و لئوپولد مطرح شد. ایواساوا میدانهای سیکلوتومیک را آنالوگ میدانهای عددی بسطهای میدان ثابت هندسه جبری میدانست و مجموعهای از مقالات را در مورد برجهای میدانهای سیکلوتومیک و بهطور کلیتر بسطهای گالوی میدانهای عددی که گروه گالوا با گروه افزایشی همشکل است نوشت. از اعداد صحیح p-adic. لئوپولد روی یک میدان سیکلوتومیک ثابت متمرکز شد و آنالوگهای مختلف p-adic از فرمولهای اعداد کلاس تحلیلی پیچیده کلاسیک را ایجاد کرد. به طور خاص، این باعث شد که او با Kubota، آنالوگهای p-adic توابع پیچیده L را که به پسوندهای سیکلوتومیک منطقها متصل هستند، معرفی کند. سرانجام، در اواخر دهه 1960، ایواساوا [Iw 11] این کشف اساسی را انجام داد که ارتباط نزدیکی بین کار او بر روی برجهای میدانهای سیکلوتومیک و این توابع L-p-adic لئوپولد - کوبوتا وجود دارد.
Kummer's work on cyclotomic fields paved the way for the development of algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, Takagi, Artin and others. However, the success of this general theory has tended to obscure special facts proved by Kummer about cyclotomic fields which lie deeper than the general theory. For a long period in the 20th century this aspect of Kummer's work seems to have been largely forgotten, except for a few papers, among which are those by Pollaczek [Po], Artin-Hasse [A-H] and Vandiver [Va]. In the mid 1950's, the theory of cyclotomic fields was taken up again by Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues for number fields of the constant field extensions of algebraic geometry, and wrote a great sequence of papers investigating towers of cyclotomic fields, and more generally, Galois extensions of number fields whose Galois group is isomorphic to the additive group of p-adic integers. Leopoldt concentrated on a fixed cyclotomic field, and established various p-adic analogues of the classical complex analytic class number formulas. In particular, this led him to introduce, with Kubota, p-adic analogues of the complex L-functions attached to cyclotomic extensions of the rationals. Finally, in the late 1960's, Iwasawa [Iw 11] made the fundamental discovery that there was a close connection between his work on towers of cyclotomic fields and these p-adic L-functions of Leopoldt - Kubota.
Front Matter....Pages i-xvii
Character Sums....Pages 1-25
Stickelberger Ideals and Bernoulli Distributions....Pages 26-68
Complex Analytic Class Number Formulas....Pages 69-93
The p -adic L -function....Pages 94-122
Iwasawa Theory and Ideal Class Groups....Pages 123-147
Kummer Theory over Cyclotomic Z p -extensions....Pages 148-165
Iwasawa Theory of Local Units....Pages 166-189
Lubin-Tate Theory....Pages 190-219
Explicit Reciprocity Laws....Pages 220-243
Measures and Iwasawa Power Series....Pages 244-268
The Ferrero—Washington Theorems....Pages 269-279
Measures in the Composite Case....Pages 280-294
Divisibility of Ideal Class Numbers....Pages 295-313
p -adic Preliminaries....Pages 314-328
The Gamma Function and Gauss Sums....Pages 329-359
Gauss Sums and the Artin-Schreier Curve....Pages 360-380
Gauss Sums as Distributions....Pages 381-396
Back Matter....Pages 397-436