دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Om Pal, Vinod Kumar, Rijwan Khan, Bashir Alam, Mansaf Alam سری: ISBN (شابک) : 2023000887, 9781032213217 ناشر: سال نشر: 2023 تعداد صفحات: 702 [289] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Cyber Security Using Modern Technologies: Artificial Intelligence, Blockchain and Quantum Cryptography به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب امنیت سایبری با استفاده از فناوریهای مدرن: هوش مصنوعی، بلاک چین و رمزنگاری کوانتومی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Preface Acknowledgments Editors List of Contributors Chapter 1 Quantum Computing: A Global Scenario 1.1 Introduction 1.2 Quantum Computing Terminology 1.2.1 Qubit 1.2.2 Superposition 1.2.3 Parallelism 1.2.4 Entanglement 1.3 Quantum Gates 1.3.1 Controlled NOT (CNOT) Gate 1.3.2 Hadamard Gate 1.3.3 Pauli-X Gate 1.3.4 Toffoli Gate 1.4 Need of Quantum Computing 1.5 Quantum Computing Approaches and Challenges 1.6 Quantum Computing Research Status 1.6.1 Quantum Computing Research Status in India 1.7 Conclusion and Future Directions References Chapter 2 Post-Quantum Digital Signatures 2.1 Introduction 2.1.1 Section-Wise Plan 2.1.2 Background Expected of the Reader 2.2 Preliminaries and Notations 2.2.1 Digital Signatures and Their Security 2.2.2 Secure Signatures in ROM 2.2.3 Modelling Quantum Adversary 2.3 NIST PQC Standardization Competition 2.3.1 Round Three Candidates 2.4 Lattice-Based Signatures 2.4.1 Hard Problems 2.4.2 NTRUSign 2.4.3 GPV Framework 2.4.3.1 Falcon Signature Scheme 2.4.4 Fiat-Shamir with Aborts 2.4.4.1 CRYSTALS-DILITHIUM Signature Scheme 2.5 MQ-Based Signatures 2.5.1 MQ-Based Hard Problems 2.5.2 Oil-Vinegar Signatures 2.5.2.1 Unbalanced Oil-Vinegar Signature 2.5.2.2 Rainbow Signature Scheme 2.5.2.3 LUOV Signature Scheme 2.5.3 HFE Signatures 2.5.3.1 GeMSS 2.6 Signatures Based on Symmetric Key Techniques 2.6.1 Picnic 2.6.1.1 ZKBoo 2.6.1.2 ZKB++ and Picnic 2.6.2 SPHINCS+ 2.7 Signatures Based on Supersingular Isogenies 2.7.1 Preliminaries on Elliptic Curves 2.7.2 Yoo et al. Scheme 2.7.3 A Discussion on Other Isogeny-Based Signatures 2.8 Some Interesting Use Cases 2.8.1 Certification Authority and Authentication in TLS 2.8.2 Secure and Verified Boot 2.8.3 Miscellaneous Applications 2.8.4 Challenges in Standardization, Migration, and Ubiquitous Usage of Such Schemes 2.9 Conclusions Acknowledgements Notes References Chapter 3 Analysis of Quantum Computing with Food Processing Use Case 3.1 Introduction 3.1.1 Need for Computational Analysis of Quantum Computing 3.1.2 Issues and Challenges in the Area of Quantum Computing 3.1.3 Applications of Quantum Computing 3.1.4 Paper Organization 3.2 Related Work 3.3 Role of Quantum Computing for HPC 3.3.1 Programming Model of Quantum Computing 3.3.2 Architecture of Quantum Computing 3.3.3 Methodology and Concepts for Quantum Computing 3.4 Quantum Computing Use Case for Food Processing 3.4.1 Proposed System Architecture 3.4.2 Applicability of Expected Outcomes 3.5 Summary References Chapter 4 Security of Modern Networks and its Challenges 4.1 Introduction to Modern Networks 4.2 Security of Modern Networks 4.2.1 How Do We Deal with Network Security? 4.3 Types of Security Attacks 4.4 Modern Network Security Methods 4.5 Network Security Tools 4.6 Network Security Challenges 4.7 Conclusion References Chapter 5 Security and Performance Analysis of Advanced Metering Infrastructure in Smart Grid and Use of Blockchain in Security Perspective 5.1 Introduction 5.2 Background 5.3 Key Management Protocols 5.4 Blockchain in AMI of SG for Security 5.5 Comparative Analysis 5.6 Future Research Directions 5.7 Conclusion References Chapter 6 Computation and Storage Efficient Key Distribution Protocol for Secure Multicast Communication in Centralized Environments 6.1 Introduction 6.2 Related Work 6.3 Proposed Architecture for Key Distribution in Centralized Environments 6.4 Proposed CSKD Protocol 6.4.1 Initialization Phase 6.4.2 Initial Member Join 6.4.3 Key Update 6.4.3.1 Adding Member 6.4.3.2 Leaving Member 6.4.4 Key Recovery 6.5 Security Analysis 6.5.1 Forward Secrecy 6.5.2 Backward Secrecy 6.5.3 Passive Attack 6.5.4 Collision Attack 6.5.5 Reply Attack 6.6 Performance Analysis 6.7 Experimental Results 6.8 Conclusion References Chapter 7 Effective Key Agreement Protocol for Large and Dynamic Groups Using Elliptic Curve Cryptography 7.1 Introduction 7.2 Related Work 7.3 Proposed Distributed Key Management Protocol 7.3.1 Initialization Phase 7.3.2 Batch Rekeying 7.3.3 Procedure for Finding IP 7.3.4 Procedure for Pruning 7.4 Performance Analysis 7.5 Implementation Results 7.6 Conclusion References Chapter 8 Cyber Security Using Artificial Intelligence 8.1 Introduction 8.2 Cyber Security 8.3 Cyber Threats 8.4 AI-Based Systems Support Cyber Security 8.5 Benefits of AI in Cyber Security 8.6 AI-Based Cyber Security Tools 8.7 Growth of AI in Cyber Security 8.8 Challenges and Limitations 8.9 Conclusion References Chapter 9 Cloud Computing: An Overview of Security Risk Assessment Models and Frameworks 9.1 Introduction 9.2 Existing Security Risk Assessment Models & Frameworks 9.2.1 Cloud Risk Assessment Models 9.2.1.1 Cloud Adoption Risk Assessment Model 9.2.1.2 Consultative, Objective, and Bi-Functional Risk Analysis 9.2.2 Cloud Risk Assessment Frameworks 9.2.2.1 Cloud Security Risk Management Framework 9.2.3 Information Security Risk Management Framework 9.2.4 Security Risk Assessment Framework 9.3 Performance Analysis of the Existing Models and Frameworks 9.3.1 Does the Framework Effectively Address Both Phases of Risk Management (Risk Assessment and Risk Treatment)? 9.3.2 Does the Framework Enable the CSP and the Customer to Efficiently Assess and Mitigate Cloud Security Risks? 9.4 Conclusion and Future Directions Acknowledgment References Chapter 10 Generating Cyber Threat Intelligence to Discover Potential Security Threats Using Classification and Topic Modeling 10.1 Introduction 10.1.1 Background and Motivation 10.1.2 Problem Statement and Goal 10.2 Methodology 10.2.1 Data Collection 10.2.2 Preprocessing and Dataset Construction 10.2.2.1 Binary Dataset Construction 10.2.2.2 Multi-Class Dataset Construction 10.2.3 Feature Engineering 10.2.4 Supervised Method: Classification 10.2.5 Unsupervised Method: Topic Modeling 10.3 Experimental Setup 10.4 Experimental Results 10.5 Discussion on Results 10.6 Challenges and Future Scopes 10.7 Conclusion References Chapter 11 Cyber-Physical Energy Systems Security: Attacks, Vulnerabilities and Risk Management 11.1 Introduction 11.1.1 CPES Components 11.1.1.1 Sensing Components 11.1.1.2 Controlling Components 11.1.2 CPES Layers 11.1.3 CPES Security Concerns 11.1.4 Contribution of this Chapter 11.2 Related Work 11.3 CPES Threats and Vulnerabilities 11.3.1 CPES Security Threats 11.3.1.1 Cyber Threats 11.3.1.2 Physical Threats 11.3.2 CPES Vulnerabilities 11.3.2.1 Cyber Vulnerabilities 11.3.2.2 Physical Vulnerabilities 11.4 Cyber-Attacks and Cyber Security in CPES 11.4.1 Passive Attacks 11.4.2 Active Attacks 11.5 Cyber-Attack Analysis 11.5.1 Some Recent Cyber-Attacks in CPES 11.5.2 CPES-Specific Attacks: Case Study 11.5.2.1 Case Study 1: Cross-Layer Firmware Attacks 11.5.2.2 Case Study 2: Load-Changing Attacks 11.5.2.3 Case Study 3: Time-Delay Attacks 11.5.2.4 Case Study 4: Propagating Attacks on Integrated Transmission and Distribution CPES 11.6 CPES Risk Evaluation 11.6.1 Risk Identification and Management 11.6.2 Risk Assessment 11.6.3 Risk Impact 11.6.4 Risk Mitigation 11.6.5 CPES Forensics 11.7 Ground for Future Work 11.8 Conclusion References Chapter 12 Intrusion Detection Using Machine Learning 12.1 Introduction 12.1.1 IDS Classification 12.1.2 Why IDS? 12.2 Related Work 12.3 Experiment 12.3.1 Data Preprocessing 12.3.1.1 Transformation Operation 12.3.1.2 Normalization Operation 12.3.2 Proposed Feature Selection Methods 12.3.2.1 The Technique for the Combination of Various Algorithms for Selecting Features 12.3.2.2 The Combining Technique of Various Characteristic Choice Set of Rules Consistent with Protocol Type 12.3.3 Evaluation 12.4 Result 12.5 Conclusion References Chapter 13 Network Forensics 13.1 Introduction 13.2 Methodology for Network Forensics 13.2.1 Identification 13.2.2 Preservation 13.2.3 Collection 13.2.4 Examination 13.2.5 Analysis 13.2.6 Presentation 13.2.7 Incident Response 13.3 Sources of Evidence 13.3.1 Spout the Wire and the Air (TAPs) 13.3.2 CAM Table on a Network Switch 13.3.3 Routing Tables Function for Routers 13.3.4 Domain Controller/Authentication Servers/System Records 13.3.5 IDS/IPS Records 13.3.6 Proxy Server Records 13.4 Tools in Digital Forensics 13.4.1 Tcpdump (Command Line) 13.4.2 Wireshark (Graphical User Interface) 13.4.3 Network Miner 13.4.4 Splunk 13.4.5 Snort 13.4.6 The Sleuth Kit 13.4.7 Autopsy 13.4.8 ProDiscover Basic 13.4.9 SANS SIFT 13.4.10 Volatileness 13.5 Methodology in Digital Forensics 13.5.1 Preserving the Evidence 13.5.2 Web Scheme Reconstruction 13.5.3 File Signature Attestation 13.5.4 Network Device Inspection 13.5.5 Recovering Invisible Files 13.6 Conclusion References Chapter 14 A Deep Neural Network-Based Biometric Random Key Generator for Security Enhancement 14.1 Introduction 14.1.1 System Contributions 14.1.2 Chapter Organization 14.2 Review of Literature 14.3 Proposed System 14.3.1 Key Generation Unit 14.3.1.1 Neural Network 14.3.1.2 Multi-Task Cascaded Convolutional Neural Networks 14.3.1.3 Facenet 14.3.1.4 Round Off Operations 14.3.2 Design of LFSR 14.3.2.1 Pseudo-Random Number Generator 14.3.3 Encryption and Decryption Process 14.3.3.1 Encryption Unit 14.3.3.2 Decryption Unit 14.4 Implementation 14.4.1 MTCNN 14.4.1.1 P-Net 14.4.1.2 R-Net 14.4.1.3 O-Net 14.4.2 Facenet 14.4.3 LFSR 14.5 Results 14.5.1 Visual Presentation of the Encryption and Decryption Sequence 14.5.2 Tests on Subsequence Generated 14.5.2.1 Chi-Square Test 14.5.2.2 Run Up-Down Test 14.5.2.3 Performance Analysis of Encryption and Decryption 14.6 Conclusion 14.6.1 Limitations and Future Scope of the System References Chapter 15 Quantum Computing and its Real-World Applications 15.1 Introduction 15.2 Quantum Computing 15.2.1 Key Points of Quantum Theory 15.2.2 Qubit, Superposition, and Entanglement 15.2.3 Supremacy of Quantum Computing Over Classical Computer 15.2.4 Computer Computing vs Classical Computing 15.2.5 Rumors and Realities About Quantum Computing 15.3 Hand-Held Applications of Quantum Computing 15.3.1 Quantum Computing in Cyber Security 15.3.2 Quantum Computing in Cloud Computing 15.3.3 Quantum Computing in Evolutionary Computing 15.4 Discussion and Conclusion References Chapter 16 Encrypted Network Traffic Classification and Application Identification Employing Deep Learning 16.1 Introduction 16.2 Literature Review 16.3 Deep Learning and CNN 16.3.1 Deep Learning 16.3.2 Convolutional Neural Networks 16.4 Material and Methods 16.5 Dataset 16.6 Preprocessing 16.6.1 Labelling Dataset 16.6.2 Model Architecture 16.7 Experimental Results and Discussion 16.8 Conclusion References Index