دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: امنیت ویرایش: نویسندگان: Mangesh M. Ghonge, Sabyasachi Pramanik, Ramchandra Mangrulkar, Dac-Nhuong Le سری: Advances in Cyber Security ISBN (شابک) : 111979563X, 9781119795636 ناشر: Wiley-Scrivener سال نشر: 2022 تعداد صفحات: 415 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Cyber Security and Digital Forensics: Challenges and Future Trends به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب امنیت سایبری و پزشکی قانونی دیجیتال: چالش ها و روندهای آینده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
امنیت سایبری یک موضوع فوق العاده مهم است که با روش ها، فرآیندها و فناوری های جدید دائماً در حال تغییر است. کتابهایی مانند این برای حرفهایهایی که در این زمینه کار میکنند بسیار ارزشمند هستند تا از همه این تغییرات مطلع شوند.
تهدیدات سایبری کنونی با تکامل سریع تکنیکهای متخاصم پیچیدهتر و پیشرفتهتر میشوند. محاسبات شبکه ای و دستگاه های الکترونیکی قابل حمل نقش پزشکی قانونی دیجیتال را فراتر از تحقیقات سنتی در مورد جرایم رایانه ای گسترش داده اند. افزایش کلی استفاده از رایانه به عنوان راهی برای ذخیره و بازیابی اطلاعات با امنیت بالا مستلزم اقدامات امنیتی مناسب برای محافظت از کل سناریوی محاسباتی و ارتباطی در سراسر جهان است. علاوه بر این، با معرفی اینترنت و فناوری زیربنایی آن، جنبههای امنیت اطلاعات به یک دغدغه اصلی برای محافظت از شبکهها و زیرساختهای سایبری در برابر تهدیدات مختلف تبدیل شدهاند.
این جلد جدید پیشگامانه که توسط طیف وسیعی از متخصصان این حوزه نوشته و ویرایش شده است، دیدگاه های فنی و اجتماعی-اقتصادی گسترده ای را برای استفاده از فناوری های اطلاعات و ارتباطات و توسعه راه حل های عملی در امنیت سایبری پوشش می دهد. و پزشکی قانونی دیجیتال نه تنها برای افراد حرفهای که در این زمینه کار میکنند، بلکه برای دانشجویان یا دانشگاهیان در سطح دانشگاه، این یکی از موارد ضروری برای هر کتابخانه است.
مخاطبان: پزشکان، مشاوران، مهندسان، دانشگاهیان و سایر متخصصان شاغل در حوزههای تحلیل سایبری، امنیت سایبری، امنیت داخلی، دفاع ملی، حفاظت از زیرساختهای حیاتی ملی ، جرایم سایبری، آسیبپذیریهای سایبری، حملات سایبری مرتبط با سیستمهای شبکه، برنامهریزی کاهش تهدیدات سایبری، و کسانی که رهبری مدیریت امنیت سایبری را در بخشهای دولتی و خصوصی ارائه میدهند
Cyber security is an incredibly important issue that is constantly changing, with new methods, processes, and technologies coming online all the time. Books like this are invaluable to professionals working in this area, to stay abreast of all of these changes.
Current cyber threats are getting more complicated and advanced with the rapid evolution of adversarial techniques. Networked computing and portable electronic devices have broadened the role of digital forensics beyond traditional investigations into computer crime. The overall increase in the use of computers as a way of storing and retrieving high-security information requires appropriate security measures to protect the entire computing and communication scenario worldwide. Further, with the introduction of the internet and its underlying technology, facets of information security are becoming a primary concern to protect networks and cyber infrastructures from various threats.
This groundbreaking new volume, written and edited by a wide range of professionals in this area, covers broad technical and socio-economic perspectives for the utilization of information and communication technologies and the development of practical solutions in cyber security and digital forensics. Not just for the professional working in the field, but also for the student or academic on the university level, this is a must-have for any library.
Audience: Practitioners, consultants, engineers, academics, and other professionals working in the areas of cyber analysis, cyber security, homeland security, national defense, the protection of national critical infrastructures, cyber-crime, cyber vulnerabilities, cyber-attacks related to network systems, cyber threat reduction planning, and those who provide leadership in cyber security management both in public and private sectors
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface Acknowledgment 1 A Comprehensive Study of Security Issues and Research Challenges in Different Layers of ServiceOriented IoT Architecture 1.1 Introduction and Related Work 1.2 IoT: Evolution, Applications and Security Requirements 1.2.1 IoT and Its Evolution 1.2.2 Different Applications of IoT 1.2.3 Different Things in IoT 1.2.4 Security Requirements in IoT 1.3 Service-Oriented IoT Architecture and IoT Protocol Stack 1.3.1 Service-Oriented IoT Architecture 1.3.2 IoT Protocol Stack 1.3.2.1 Application Layer Protocols 1.3.2.2 Transport Layer Protocols 1.3.2.3 Network Layer Protocols 1.3.2.4 Link Layer and Physical Layer Protocols 1.4 Anatomy of Attacks on Service-Oriented IoT Architecture 1.4.1 Attacks on Software Service 1.4.1.1 Operating System–Level Attacks 1.4.1.2 Application-Level Attacks 1.4.1.3 Firmware-Level Attacks 1.4.2 Attacks on Devices 1.4.3 Attacks on Communication Protocols 1.4.3.1 Attacks on Application Layer Protocols 1.4.3.2 Attacks on Transport Layer Protocols 1.4.3.3 Attacks on Network Layer Protocols 1.4.3.4 Attacks on Link and Physical Layer Protocols 1.5 Major Security Issues in Service-Oriented IoT Architecture 1.5.1 Application – Interface Layer 1.5.2 Service Layer 1.5.3 Network Layer 1.5.4 Sensing Layer 1.6 Conclusion References 2 Quantum and Post-Quantum Cryptography 2.1 Introduction 2.2 Security of Modern Cryptographic Systems 2.2.1 Classical and Quantum Factoring of A Large Number 2.2.2 Classical and Quantum Search of An Item 2.3 Quantum Key Distribution 2.3.1 BB84 Protocol 2.3.1.1 Proposed Key Verification Phase for BB84 2.3.2 E91 Protocol 2.3.3 Practical Challenges of Quantum Key Distribution 2.3.4 Multi-Party Quantum Key Agreement Protocol 2.4 Post-Quantum Digital Signature 2.4.1 Signatures Based on Lattice Techniques 2.4.2 Signatures Based on Multivariate Quadratic Techniques 2.4.3 Hash-Based Signature Techniques 2.5 Conclusion and Future Directions References 3 Artificial Neural Network Applications in Analysis of Forensic Science 3.1 Introduction 3.2 Digital Forensic Analysis Knowledge 3.3 Answer Set Programming in Digital Investigations 3.4 Data Science Processing with Artificial Intelligence Models 3.5 Pattern Recognition Techniques 3.6 ANN Applications 3.7 Knowledge on Stages of Digital Forensic Analysis 3.8 Deep Learning and Modelling 3.9 Conclusion References 4 A Comprehensive Survey of Fully Homomorphic Encryption from Its Theory to Applications 4.1 Introduction 4.2 Homomorphic Encryption Techniques 4.2.1 Partial Homomorphic Encryption Schemes 4.2.2 Fully Homomorphic Encryption Schemes 4.3 Homomorphic Encryption Libraries 4.4 Computations on Encrypted Data 4.5 Applications of Homomorphic Encryption 4.6 Conclusion References 5 Understanding Robotics through Synthetic Psychology 5.1 Introduction 5.2 Physical Capabilities of Robots 5.2.1 Artificial Intelligence and Neuro Linguistic Programming (NLP) 5.2.2 Social Skill Development and Activity Engagement 5.2.3 Autism Spectrum Disorders 5.2.4 Age-Related Cognitive Decline and Dementia 5.2.5 Improving Psychosocial Outcomes through Robotics 5.2.6 Clients with Disabilities and Robotics 5.2.7 Ethical Concerns and Robotics 5.3 Traditional Psychology, Neuroscience and Future Robotics 5.4 Synthetic Psychology and Robotics: A Vision of the Future 5.5 Synthetic Psychology: The Foresight 5.6 Synthetic Psychology and Mathematical Optimization 5.7 Synthetic Psychology and Medical Diagnosis 5.7.1 Virtual Assistance and Robotics 5.7.2 Drug Discovery and Robotics 5.8 Conclusion References 6 An Insight into Digital Forensics: History, Frameworks, Types and Tools 6.1 Overview 6.2 Digital Forensics 6.2.1 Why Do We Need Forensics Process? 6.2.2 Forensics Process Principles 6.3 Digital Forensics History 6.3.1 1985 to 1995 6.3.2 1995 to 2005 6.3.3 2005 to 2015 6.4 Evolutionary Cycle of Digital Forensics 6.4.1 Ad Hoc 6.4.2 Structured Phase 6.4.3 Enterprise Phase 6.5 Stages of Digital Forensics Process 6.5.1 Stage 1 1995 to 2003 6.5.2 Stage II 2004 to 2007 6.5.3 Stage III 2007 to 2014 6.6 Types of Digital Forensics 6.6.1 Cloud Forensics 6.6.2 Mobile Forensics 6.6.3 IoT Forensics 6.6.4 Computer Forensics 6.6.5 Network Forensics 6.6.6 Database Forensics 6.7 Evidence Collection and Analysis 6.8 Digital Forensics Tools 6.8.1 X-Ways Forensics 6.8.2 SANS Investigative Forensics Toolkit – SIFT 6.8.3 EnCase 6.8.4 The Sleuth Kit/Autopsy 6.8.5 Oxygen Forensic Suite 6.8.6 Xplico 6.8.7 Computer Online Forensic Evidence Extractor (COFEE) 6.8.8 Cellebrite UFED 6.8.9 OSForeniscs 6.8.10 Computer-Aided Investigative Environment (CAINE) 6.9 Summary References 7 Digital Forensics as a Service: Analysis for Forensic Knowledge 7.1 Introduction 7.2 Objective 7.3 Types of Digital Forensics 7.3.1 Network Forensics 7.3.2 Computer Forensics 7.3.3 Data Forensics 7.3.4 Mobile Forensics 7.3.5 Big Data Forensics 7.3.6 IoT Forensics 7.3.7 Cloud Forensics 7.4 Conclusion References 8 4S Framework: A Practical CPS Design Security Assessment & Benchmarking Framework 8.1 Introduction 8.2 Literature Review 8.3 Medical Cyber Physical System (MCPS) 8.3.1 Difference between CPS and MCPS 8.3.2 MCPS Concerns, Potential Threats, Security 8.4 CPSSEC vs. Cyber Security 8.5 Proposed Framework 8.5.1 4S Definitions 8.5.2 4S Framework-Based CPSSEC Assessment Process: 8.5.3 4S Framework-Based CPSSEC Assessment Score Breakdown & Formula 8.6 Assessment of Hypothetical MCPS Using 4S Framework 8.6.1 System Description 8.6.2 Use Case Diagram for the Above CPS 8.6.3 Iteration 1 of 4S Assessment 8.6.4 Iteration 2 of 4S Assessment 8.7 Conclusion 8.8 Future Scope References 9 Ensuring Secure Data Sharing in IoT Domains Using Blockchain 9.1 IoT and Blockchain 9.1.1 Public 9.1.1.1 Proof of Work (PoW) 9.1.1.2 Proof of Stake (PoS) 9.1.1.3 Delegated Proof of Stake (DPoS) 9.1.2 Private 9.1.3 Consortium or Federated 9.2 IoT Application Domains and Challenges in Data Sharing 9.3 Why Blockchain? 9.4 IoT Data Sharing Security Mechanism On Blockchain 9.4.1 Double-Chain Mode Based On Blockchain Technology 9.4.2 Blockchain Structure Based On Time Stamp 9.5 Conclusion References 10 A Review of Face Analysis Techniques for Conventional and Forensic Applications 10.1 Introduction 10.2 Face Recognition 10.2.1 Literature Review on Face Recognition 10.2.2 Challenges in Face Recognition 10.2.3 Applications of Face Recognition 10.3 Forensic Face Recognition 10.3.1 Literature Review on Face Recognition for Forensics 10.3.2 Challenges of Face Recognition in Forensics 10.3.3 Possible Datasets Used for Forensic Face Recognition 10.3.4 Fundamental Factors for Improving Forensics Science 10.3.5 Future Perspectives 10.4 Conclusion References 11 Roadmap of Digital Forensics Investigation Process with Discovery of Tools 11.1 Introduction 11.2 Phases of Digital Forensics Process 11.2.1 Phase I Identification 11.2.2 Phase II Acquisition and Collection 11.2.3 Phase III Analysis and Examination 11.2.4 Phase IV Reporting 11.3 Analysis of Challenges and Need of Digital Forensics 11.3.1 Digital Forensics Process has following Challenges 11.3.2 Needs of Digital Forensics Investigation 11.3.3 Other Common Attacks Used to Commit the Crime 11.4 Appropriateness of Forensics Tool 11.4.1 Level of Skill 11.4.2 Outputs 11.4.3 Region of Emphasis 11.4.4 Support for Additional Hardware 11.5 Phase-Wise Digital Forensics Techniques 11.5.1 Identification 11.5.2 Acquisition 11.5.3 Analysis 11.5.3.1 Data Carving 11.5.3.2 Different Curving Techniques 11.5.3.3 Volatile Data Forensic Toolkit Used to Collect and Analyze the Data from Device 11.5.4 Report Writing 11.6 Pros and Cons of Digital Forensics Investigation Process 11.6.1 Advantages of Digital Forensics 11.6.2 Disadvantages of Digital Forensics 11.7 Conclusion References 12 Utilizing Machine Learning and Deep Learning in Cybesecurity: An Innovative Approach 12.1 Introduction 12.1.1 Protections of Cybersecurity 12.1.2 Machine Learning 12.1.3 Deep Learning 12.1.4 Machine Learning and Deep Learning: Similarities and Differences 12.2 Proposed Method 12.2.1 The Dataset Overview 12.2.2 Data Analysis and Model for Classification 12.3 Experimental Studies and Outcomes Analysis 12.3.1 Metrics on Performance Assessment 12.3.2 Result and Outcomes 12.3.2.1 Issue 1: Classify the Various Categories of Feedback Related to the Malevolent Code Provided 12.3.2.2 Issue 2: Recognition of the Various Categories of Feedback Related to the Malware Presented 12.3.2.3 Issue 3: According to the Malicious Code, Distinguishing Various Forms of Malware 12.3.2.4 Issue 4: Detection of Various Malware Styles Based on Different Responses 12.3.3 Discussion 12.4 Conclusions and Future Scope References 13 Applications of Machine Learning Techniques in the Realm of Cybersecurity 13.1 Introduction 13.2 A Brief Literature Review 13.3 Machine Learning and Cybersecurity: Various Issues 13.3.1 Effectiveness of ML Technology in Cybersecurity Systems 13.3.2 Machine Learning Problems and Challenges in Cybersecurity 13.3.2.1 Lack of Appropriate Datasets 13.3.2.2 Reduction in False Positives and False Negatives 13.3.2.3 Adversarial Machine Learning 13.3.2.4 Lack of Feature Engineering Techniques 13.3.2.5 Context-Awareness in Cybersecurity 13.3.3 Is Machine Learning Enough to Stop Cybercrime? 13.4 ML Datasets and Algorithms Used in Cybersecurity 13.4.1 Study of Available ML-Driven Datasets Available for Cybersecurity 13.4.1.1 KDD Cup 1999 Dataset (DARPA1998) 13.4.1.2 NSL-KDD Dataset 13.4.1.3 ECML-PKDD 2007 Discovery Challenge Dataset 13.4.1.4 Malicious URL’s Detection Dataset 13.4.1.5 ISOT (Information Security and Object Technology) Botnet Dataset 13.4.1.6 CTU-13 Dataset 13.4.1.7 MAWILab Anomaly Detection Dataset 13.4.1.8 ADFA-LD and ADFA-WD Datasets 13.4.2 Applications ML Algorithms in Cybersecurity Affairs 13.4.2.1 Clustering 13.4.2.2 Support Vector Machine (SVM) 13.4.2.3 Nearest Neighbor (NN) 13.4.2.4 Decision Tree 13.4.2.5 Dimensionality Reduction 13.5 Applications of Machine Learning in the Realm of Cybersecurity 13.5.1 Facebook Monitors and Identifies Cybersecurity Threats with ML 13.5.2 Microsoft Employs ML for Security 13.5.3 Applications of ML by Google 13.6 Conclusions References 14 Security Improvement Technique for Distributed Control System (DCS) and Supervisory Control-Data Acquisition (SCADA) Using Bl 14.1 Introduction 14.2 Significance of Security Improvement in DCS and SCADA 14.3 Related Work 14.4 Proposed Methodology 14.4.1 Algorithms Used for Implementation 14.4.2 Components of a Blockchain 14.4.3 MERKLE Tree 14.4.4 The Technique of Stack and Work Proof 14.4.5 Smart Contracts 14.5 Result Analysis 14.6 Conclusion References 15 Recent Techniques for Exploitation and Protection of Common Malicious Inputs to Online Applications 15.1 Introduction 15.2 SQL Injection 15.2.1 Introduction 15.2.2 Exploitation Techniques 15.2.2.1 In-Band SQL Injection 15.2.2.2 Inferential SQL Injection 15.2.2.3 Out-of-Band SQL Injection 15.2.3 Causes of Vulnerability 15.2.4 Protection Techniques 15.2.4.1 Input Validation 15.2.4.2 Data Sanitization 15.2.4.3 Use of Prepared Statements 15.2.4.4 Limitation of Database Permission 15.2.4.5 Using Encryption 15.3 Cross Site Scripting 15.3.1 Introduction 15.3.2 Exploitation Techniques 15.3.2.1 Reflected Cross Site Scripting 15.3.2.2 Stored Cross Site Scripting 15.3.2.3 DOM-Based Cross Site Scripting 15.3.3 Causes of Vulnerability 15.3.4 Protection Techniques 15.3.4.1 Data Validation 15.3.4.2 Data Sanitization 15.3.4.3 Escaping on Output 15.3.4.4 Use of Content Security Policy 15.4 Cross Site Request Forgery 15.4.1 Introduction 15.4.2 Exploitation Techniques 15.4.2.1 HTTP Request with GET Method 15.4.2.2 HTTP Request with POST Method 15.4.3 Causes of Vulnerability 15.4.3.1 Session Cookie Handling Mechanism 15.4.3.2 HTML Tag 15.4.3.3 Browser’s View Source Option 15.4.3.4 GET and POST Method 15.4.4 Protection Techniques 15.4.4.1 Checking HTTP Referer 15.4.4.2 Using Custom Header 15.4.4.3 Using Anti-CSRF Tokens 15.4.4.4 Using a Random Value for each Form Field 15.4.4.5 Limiting the Lifetime of Authentication Cookies 15.5 Command Injection 15.5.1 Introduction 15.5.2 Exploitation Techniques 15.5.3 Causes of Vulnerability 15.5.4 Protection Techniques 15.6 File Inclusion 15.6.1 Introduction 15.6.2 Exploitation Techniques 15.6.2.1 Remote File Inclusion 15.6.2.2 Local File Inclusion 15.6.3 Causes of Vulnerability 15.6.4 Protection Techniques 15.7 Conclusion References 16 Ransomware: Threats, Identification and Prevention 16.1 Introduction 16.2 Types of Ransomwares 16.2.1 Locker Ransomware 16.2.1.1 Reveton Ransomware 16.2.1.2 Locky Ransomware 16.2.1.3 CTB Locker Ransomware 16.2.1.4 TorrentLocker Ransomware 16.2.2 Crypto Ransomware 16.2.2.1 PC Cyborg Ransomware 16.2.2.2 OneHalf Ransomware 16.2.2.3 GPCode Ransomware 16.2.2.4 CryptoLocker Ransomware 16.2.2.5 CryptoDefense Ransomware 16.2.2.6 CryptoWall Ransomware 16.2.2.7 TeslaCrypt Ransomware 16.2.2.8 Cerber Ransomware 16.2.2.9 Jigsaw Ransomware 16.2.2.10 Bad Rabbit Ransomware 16.2.2.11 WannaCry Ransomware 16.2.2.12 Petya Ransomware 16.2.2.13 Gandcrab Ransomware 16.2.2.14 Rapid Ransomware 16.2.2.15 Ryuk Ransomware 16.2.2.16 Lockergoga Ransomware 16.2.2.17 PewCrypt Ransomware 16.2.2.18 Dhrama/Crysis Ransomware 16.2.2.19 Phobos Ransomware 16.2.2.20 Malito Ransomware 16.2.2.21 LockBit Ransomware 16.2.2.22 GoldenEye Ransomware 16.2.2.23 REvil or Sodinokibi Ransomware 16.2.2.24 Nemty Ransomware 16.2.2.25 Nephilim Ransomware 16.2.2.26 Maze Ransomware 16.2.2.27 Sekhmet Ransomware 16.2.3 MAC Ransomware 16.2.3.1 KeRanger Ransomware 16.2.3.2 Go Pher Ransomware 16.2.3.3 FBI Ransom Ransomware 16.2.3.4 File Coder 16.2.3.5 Patcher 16.2.3.6 ThiefQuest Ransomware 16.2.3.7 Keydnap Ransomware 16.2.3.8 Bird Miner Ransomware 16.3 Ransomware Life Cycle 16.4 Detection Strategies 16.4.1 UNEVIL 16.4.2 Detecting File Lockers 16.4.3 Detecting Screen Lockers 16.4.4 Connection-Monitor and Connection-Breaker Approach 16.4.5 Ransomware Detection by Mining API Call Usage 16.4.6 A New Static-Based Framework for Ransomware Detection 16.4.7 White List-Based Ransomware Real-Time Detection Prevention (WRDP) 16.5 Analysis of Ransomware 16.5.1 Static Analysis 16.5.2 Dynamic Analysis 16.6 Prevention Strategies 16.6.1 Access Control 16.6.2 Recovery After Infection 16.6.3 Trapping Attacker 16.7 Ransomware Traits Analysis 16.8 Research Directions 16.9 Conclusion References Index Also of Interest Check out these other related titles from Scrivener Publishing Also in the series, “Advances in Cyber Security” Other related titles