دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری ویرایش: نویسندگان: Ajar Nath Yadav, Joginder Singh, Chhatarpal Singh, Neelam Yadav سری: Environmental and Microbial Biotechnology ISBN (شابک) : 9811569487, 9789811569487 ناشر: Springer سال نشر: 2020 تعداد صفحات: 578 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Current Trends in Microbial Biotechnology for Sustainable Agriculture به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روندهای فعلی در بیوتکنولوژی میکروبی برای کشاورزی پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بیوتکنولوژی میکروبی یک زمینه نوظهور با کاربرد در طیف وسیعی از بخشهایی است که شامل امنیت غذایی، تغذیه انسانی، حفاظت از گیاهان و تحقیقات پایه کلی در علوم کشاورزی میشود. محیط زیست از قدیم الایام بار بشر را بر دوش داشته است و استفاده بی رویه ما از منابع آن منجر به تخریب اقلیم، از بین رفتن حاصلخیزی خاک و نیاز به استراتژی های پایدار شده است.
تمرکز اصلی در دهه های آینده بر دستیابی به محیطی سبز و پاک با استفاده از خاک و جوامع میکروبی مفید مرتبط با گیاهان خواهد بود. فعل و انفعالات گیاه و میکروب شامل ارتباط میکروب ها با سیستم های گیاهی است: اپی فیتیک، اندوفیت و ریزوسفر. میکروب های مرتبط با اکوسیستم های گیاهی نقش مهمی در رشد، نمو و سلامت خاک بازی می کنند. علاوه بر این، میکروبیومهای خاک و گیاه به ترویج رشد گیاه، به طور مستقیم یا غیرمستقیم با استفاده از مکانیسمهای محرک رشد گیاه، به عنوان مثال، کمک میکنند. انتشار تنظیم کننده های رشد گیاه؛ حل شدن فسفر، پتاسیم و روی؛ تثبیت بیولوژیکی نیتروژن؛ یا با تولید سیدروفورها، آمونیاک، HCN و سایر متابولیت های ثانویه.
این جوامع میکروبی مفید با ارائه کودهای زیستی، محافظهای زیستی
و محرکهای زیستی، علاوه بر کاهش انواع مختلف تنش غیرزیستی در
گیاهان، راهحلی جدید و امیدوارکننده برای پایداری
زراعی-محیطزیستی ارائه میکنند. این کتاب بر روی فعل و
انفعالات گیاه و میکروب تمرکز دارد. تنوع زیستی خاک و میکروبیوم
های گیاهی؛ و نقش آنها در رشد گیاه و سلامت خاک. بر این اساس،
برای خوانندگانی که در علوم زیستی کار می کنند، به ویژه
میکروبیولوژیست ها، بیوشیمیست ها و بیوتکنولوژیست های میکروبی
بسیار مفید خواهد بود.
Microbial biotechnology is an emerging field with applications in a broad range of sectors involving food security, human nutrition, plant protection and overall basic research in the agricultural sciences. The environment has been sustaining the burden of mankind from time immemorial, and our indiscriminate use of its resources has led to the degradation of the climate, loss of soil fertility, and the need for sustainable strategies.
The major focus in the coming decades will be on achieving a green and clean environment by utilizing soil and plant-associated beneficial microbial communities. Plant-microbe interactions include the association of microbes with plant systems: epiphytic, endophytic and rhizospheric. The microbes associated with plant ecosystems play an important role in plant growth, development, and soil health. Moreover, soil and plant microbiomes help to promote plant growth, either directly or indirectly by means of plant growth-promoting mechanisms, e.g. the release of plant growth regulators; solubilization of phosphorus, potassium and zinc; biological nitrogen fixation; or by producing siderophores, ammonia, HCN and other secondary metabolites.
These beneficial microbial communities represent a novel and
promising solution for agro-environmental sustainability by
providing biofertilizers, bioprotectants, and biostimulants,
in addition to mitigating various types of abiotic stress in
plants. This book focuses on plant-microbe interactions; the
biodiversity of soil and plant microbiomes; and their role in
plant growth and soil health. Accordingly, it will be
immensely useful to readers working in the biological
sciences, especially microbiologists, biochemists and
microbial biotechnologists.
Preface Acknowledgements Contents Editors and Contributors About the Editors Contributors 1: Soil Microbiomes for Healthy Nutrient Recycling 1.1 Introduction 1.2 Soil Health and Sustainability 1.3 Soil Quality 1.4 Soil Quality Indicators 1.5 Potential Role of Microbes for Soil Health 1.5.1 Soil as a Microbial Habitat 1.5.2 Soil Microbes and Agro-Ecosystem Stability 1.5.3 Microorganisms and Soil Functions 1.6 Role of Microorganisms in Nutrient Cycling 1.6.1 Organic Matter Decomposition 1.6.2 Carbon Cycling 1.6.3 Nitrogen Cycle 1.6.4 Siderophores Production 1.6.5 Hormones Production 1.6.6 Phosphate Solubilization 1.6.7 Manganese (Mn) Solubilizers 1.6.8 Iron Solubilizers 1.6.9 Soil Enzymes 1.7 Conclusion and Future Perspectives References 2: Soil Microbial Diversity: Calling Citizens for Sustainable Agricultural Development 2.1 Introduction 2.2 Soil Microbial Diversity 2.2.1 The Indian Biodiversity Scenario 2.3 Soil Microbial Diversity and Its Impacts on Ecosystem Function 2.4 Soil Biodiversity and Its Role in Coping with Stress and Disturbances 2.4.1 Abiotic Stress and Disturbance 2.4.2 Biotic Stress and Disturbance 2.5 Dynamics of Microbial Communities in Metal-Polluted Areas 2.6 Bioinformatics in Soil Microbial Research 2.6.1 Biodiversity Database 2.6.2 Bacteria 2.6.3 Fungi 2.6.4 Viruses 2.6.5 Genetics 2.6.6 General All Biota 2.7 Some Specific Opportunities 2.7.1 Modernizing the Biological Library 2.7.2 Digitizing the Biological Legacy 2.7.3 Multidimensional Observation and Recording 2.7.4 Mobile Computing 2.8 Managing the Soil Biodiversity: Priorities 2.9 Bioaugmentation Assisted Phytoextraction Mediated Through Microbes 2.10 Metal Extraction and Its Mechanism from Soil by Microorganism-Assisted Plant 2.11 Significant Metal Accumulation by Plants 2.11.1 Bioavailability of Metals 2.11.2 Metal Extraction by Plants 2.12 Plant-Associated Microbes Improve Heavy Metal Mobilization/Immobilization 2.13 Metal Reduction and Oxidation 2.14 Biosorption 2.15 Conclusion and Prospects References 3: Metagenomics in Deciphering Microbial Communities Associated with Medicinal Plants 3.1 Introduction 3.2 Habitat-Based Diversity of Plants and Associated Microbes 3.2.1 Hydrophytes 3.2.2 Hygrophytes 3.2.3 Halophytes 3.2.4 Mesophytes 3.2.5 Xerophytes 3.3 Microbes Associated with Medicinal Plants 3.3.1 Taraxacum 3.3.2 Ginkgo Bilboa 3.3.3 Curcuma longa 3.3.4 Oenothera biennis 3.3.5 Linum usitatissimum 3.3.6 Melaleuca alternifolia 3.3.7 Echinacea 3.3.8 Vitis vinifera 3.3.9 Lavandula 3.3.10 Matricaria chamomilla 3.4 Metagenomics 3.5 Approaches in Metagenomics 3.6 Metagenomics and Diversity of Medicinal Plants 3.6.1 Cannabis Microbiome 3.6.2 Ocimum sanctum Microbiome 3.6.3 Maytenus spp. Microbiome 3.6.4 Centella asiatica Microbiome 3.6.5 Crocus sativus L (Saffron) Microbiome 3.6.6 Ficus deltoidea Microbiome 3.6.7 Tinospora crispa Microbiome 3.6.8 Anoectochilus roxburghii Microbiome 3.6.9 Dendrobium officinale Microbiome 3.7 Conclusion 3.8 Terminologies References 4: Role of Metagenomics in Deciphering the Microbial Communities Associated with Rhizosphere of Economically Important Plants 4.1 Introduction 4.2 Achievements with Metagenomics in Economic Important Plant and Microbial Interactions 4.2.1 Medicinal Plants 4.2.2 Plants Producing Cereals 4.2.3 Leguminous Plants 4.2.4 Essential Oil-Bearing Plants 4.3 Insight on Plant Growth-Promoting Rhizobacteria 4.4 Biotechnological Impact of Next-Generation Sequencing Technologies 4.5 Conclusion and Future Prospects References 5: Plant–Microbe Association for Mutual Benefits for Plant Growth and Soil Health 5.1 Introduction 5.2 Plants–Microbes Association 5.2.1 Endophytic Microbiome 5.2.1.1 Bacterial Endophytes 5.2.1.2 Fungal Endophytes 5.2.2 Plant Growth-Promoting Rhizobacteria 5.2.3 Breeding Microbe-Optimized Plants 5.2.4 Engineering Microbiome, Plant-Optimized Microbiomes 5.2.5 Pairing Microbe-Optimized Plant Seed with the Optimal Microbiome 5.3 Current Scenario and the Need for Adopting of Biocontrol Agents in India 5.4 Plant–Microbe Interactions at the Post-genomic Era 5.5 Importance of Microbes in Agriculture Farming 5.5.1 The Direct Impact of PGP Microbes on Plant Nutritions 5.5.1.1 Nitrogen Fixation 5.5.1.2 Phosphorus Solubilization 5.5.1.3 Potassium Solubilization 5.5.1.4 Siderophores Production 5.5.2 The Indirect Impact of PGP Microbes on Plant Nutritions 5.5.2.1 Enzymes Production 5.5.2.2 Hydrogen Cyanide Production 5.5.2.3 Induced System Resistance 5.5.2.4 Emerging Biocontrol Strategies Implementation of Plant Exudates to Attract Beneficial Biocontrol Microbes Use of Substrates to Maintain Beneficial Biocontrol Microbes Phyllosphere Biocontrol Fungi as Biocontrol Agents 5.6 Conclusion and Future Prospects References 6: Deciphering and Harnessing Plant Microbiomes: Detangling the Patterns and Process—A Clean, Green Road to Sustainable Agriculture 6.1 Introduction 6.2 Plant Microbiomes 6.2.1 Rhizosphere Microbiome 6.2.2 Phyllosphere Microbiomes 6.2.2.1 Leaf and Stem Microbiomes 6.2.2.2 Floral Microbiomes Nectar Microbiome 6.2.2.3 Fruit Microbiomes Seed Microbiomes 6.3 Tools in Microbiome Analysis 6.4 Engineering Plant Microbiomes for Eco-Friendly, Sustainable Crop Production 6.5 Conclusion and Future Perspective References 7: Rhizosphere Biology: A Key to Agricultural Sustainability 7.1 Introduction 7.2 Plant–Microbe Interaction 7.3 Engineering of Rhizosphere 7.4 Plant Metabolism Through Rhizosphere Engineering 7.5 Genetic Modification of Rhizospheric Microbes 7.6 Molecular Mechanisms in the Rhizosphere 7.7 Role of Rhizospheric Microbes for Agricultural Sustainability 7.7.1 Mutual Plant–Microbe Interactions 7.7.2 Mitigation of Drought Stress 7.7.3 Mitigation of Salinity Stress 7.7.4 Mitigation of Heavy Metals Stress 7.7.5 Mitigation of Heat Stress 7.7.6 Combating Elevation CO2 Levels 7.8 Conclusion and Future Prospects References 8: Rhizosphere Microbiomes and Their Potential Role in Increasing Soil Fertility and Crop Productivity 8.1 Introduction 8.2 The Plant Microbiomes 8.3 The Rhizosphere of Plant Microbiomes 8.4 Plant Growth Promoting and Rhizospheric Microbiomes 8.4.1 Improving Soil Fertility 8.4.2 Phytohormones Producing Microbes 8.4.3 Abiotic Stress Resistance Microbes 8.4.4 Plant Pathogen Resistance 8.5 Conclusion References 9: Plant Growth-Promoting Rhizobacteria (PGPR): Current and Future Prospects for Crop Improvement 9.1 Introduction 9.2 Applications of PGPR in Agriculture 9.3 Mechanisms of Plant Growth Promotion by PGPR 9.3.1 Biofertilization 9.3.1.1 Nitrogen Fixation 9.3.1.2 Phosphate Solubilization 9.3.1.3 Potassium Solubilization 9.3.1.4 Exopolysaccharide Production 9.3.2 Stress Management 9.3.2.1 Abiotic Stress 9.3.2.2 Biotic Stress 9.3.2.3 Rhizoremediation 9.3.3 Biocontrol 9.3.3.1 Siderophores Production 9.3.3.2 Disease Resistance by Antibiotics 9.3.3.3 Induced Systemic Resistance 9.3.3.4 Protective Enzymes 9.3.4 PGPR as Plant Growth Regulators 9.4 Future Prospects and Perspective 9.5 Conclusion References 10: Beneficial Microbiomes for Sustainable Agriculture: An Ecofriendly Approach 10.1 Introduction 10.2 National Scenario 10.3 Common Nitrogen Fixers 10.3.1 Azotobacter 10.3.2 Rhizobium 10.3.3 Azolla 10.4 Need of Biofertilizers for Sustainable Management of Agroecosystem 10.5 Applications of the Biofertilizers 10.6 Potential Traits of Some Biofertilizers 10.6.1 Azospirillum 10.6.2 Azotobacter 10.6.3 Azolla and Blue Green Algae (Cyanobacteria) 10.6.4 Phosphate-Solubilizing Bacteria 10.6.5 Mycorrhiza 10.6.6 Zinc Solubilizers 10.7 Safeguards to Use Biofertilizers 10.8 Certain Problems Using Biofertilizers 10.9 Conclusion and Future Prospects References 11: Endophytic Microbiomes and Their Plant Growth-Promoting Attributes for Plant Health 11.1 Introduction 11.2 Endophytes 11.3 Ubiquity of Endophytes 11.4 Role of Endophytes in Plant Growth Promotion 11.5 Mechanisms of Plant Growth Promotion 11.5.1 Direct Mechanisms 11.5.1.1 Phytohormone Production 11.5.1.2 Nutrient Acquisition Nitrogen Phosphorous Iron 11.5.2 Indirect Mechanisms of Plant Growth Promotion 11.5.2.1 Competition for Colonization Sites 11.5.2.2 Volatile Organic Compounds and Antagonizing Agents 11.5.2.3 Quorum Quenching 11.5.2.4 Siderophores Production 11.5.2.5 Lytic Enzyme Production 11.5.2.6 Induced Systemic Resistance Detoxification and Degradation of Virulence Factors Insect and Pest Tolerance Cold and Drought Stress Tolerance Metal Stress Tolerance 11.6 Bioactive Compounds from Endophytes 11.7 Conclusions and Future Perspectives References 12: Mycorrhiza: A Sustainable Option for Better Crop Production 12.1 Introduction 12.2 Role and Limitations of Inorganic Chemicals in Environmental Sustainability 12.3 Types and Functions of AM Fungal Biodiversity in Rhizospheric Soil 12.4 Types of Mycorrhiza and its Role in Functional Diversity 12.4.1 Endomycorrhizas 12.4.2 Arbuscular Mycorrhizal Fungi 12.4.3 Ectomycorrhiza 12.4.4 Ericoid Mycorrhiza 12.5 Effect of Organic and Inorganic Fertilizer and its Role in AM Diversity 12.6 AMF in Sustainable Crop Production 12.7 Diversity of AMF for Sustainable Agriculture: Methods and Constrain 12.8 Methods of Isolation and Propagation of Mycorrhizal Species 12.9 Monosporal Culture of AMF: Source of Pure Mycorrhizal Species 12.10 Root Organ Culture of AMF: Benefit in Biofertilizers Production 12.11 Mass Propagation of Mycorrhizal Spores: Application as Biofertilizers 12.11.1 Substrate-Based Production System 12.11.2 Substrate-Free Production System 12.11.3 In Vitro Production System 12.12 Quality Production of AMF Fungi: Limitation and Prospects 12.13 Growth and Propagation of Arbuscular Mycorrhizal Fungi 12.13.1 Trap Culture 12.14 Conclusion and Future Prospects References 13: Phyllospheric Microbes: Diversity, Functions, Interaction, and Applications in Agriculture 13.1 Introduction 13.2 Phyllospheric Subdivision and Dominant Microbes 13.3 Diversity of Phyllospheric Microbiome 13.4 Structure and Function of Phyllosphere-Associated Microbiome 13.4.1 Structure of Phyllospheric Microbes 13.4.2 Functions of Phyllospheric Microbes 13.4.2.1 Recycling 13.4.2.2 Biocontrol Agents 13.4.2.3 Growth Promoters 13.4.2.4 Stress Tolerance 13.4.2.5 Pathogenic Phyllospheric Microbes 13.5 Factors Effecting Structure and Function of Phytomicrobiome 13.6 Phyllospheric Interaction and Ecosystem Dynamic 13.6.1 Microbes Interaction 13.6.2 Chemical Exchange 13.6.3 Climate Interaction 13.6.4 Environment Interaction 13.7 Phyllospheric Microbes and Food Safety 13.8 Applications of Phyllospheric Microbiota in Agriculture 13.9 Future Prospective References 14: Mitigation Strategies for Abiotic Stress Tolerance in Plants Through Stress-Tolerant Plant Growth-Promoting Microbes 14.1 Introduction 14.2 Microbial Diversity of Microbes of Plants Growing Under Extreme Environments 14.2.1 Saline Environments 14.2.2 Arid and Semi-Arid Environments 14.2.3 Acidic Environments 14.2.4 Alkaline Environments 14.2.5 Hot Environments 14.2.6 Cold Environments 14.3 Mitigation Strategies for Abiotic Stress Tolerance in Plants 14.3.1 Phytohormones Production 14.3.2 Nitrogen Fixation 14.3.2.1 Mineral Solubilization 14.3.2.2 ACC Deaminase Production 14.3.2.3 Exopolysaccharides Matrix 14.3.2.4 Siderophores Production and Biocontrol 14.4 Conclusion and Future Prospects References 15: Plant- and Microbes-Mediated Secondary Metabolites: Remunerative Venture for Discovery and Development 15.1 Introduction 15.2 Medicinal or Therapeutic Plants 15.2.1 The Other Sources of Medicinal Natural Substances 15.2.2 Plants Metabolites 15.3 Natural Substances 15.3.1 Natural Substances from Fungi 15.3.2 Plants as Ordinary Substances 15.3.3 Marine Environment and Products 15.3.4 Algae and its Products 15.3.5 Porifera and Products Derived 15.3.6 Marine Sources of Natural Substances 15.4 Drug Innovation: Natural Substance 15.4.1 Dereplication 15.4.1.1 Methods of Dereplication 15.4.2 Searching of Database 15.5 Hyphenated Instrumentation “Classical Versus Hyphenated (on-line) Approaches” 15.6 Conclusion and Prospects References 16: Potential Strategies for Control of Agricultural Occupational Health Hazards 16.1 Introduction 16.2 Chemical Hazards of Toxic Compounds 16.2.1 Persistent Organic Pollutants (POPs) 16.3 Chemical Hazards Due to Pesticides Usage 16.4 Use of Xenoestrogens in Day-to-Day Life and Health Hazards 16.5 Protection from Pesticides 16.6 Communication of Risks and Potential Hazards 16.7 Respiratory Hazards and Protection 16.8 Skin Disorders and Infections 16.9 Musculoskeletal Injuries 16.10 Ergonomic Protections 16.11 Heat-Related Stress and Prevention 16.12 Conclusion References 17: Insecticides Derived from Natural Products: Diversity and Potential Applications 17.1 Introduction 17.2 Botanicals for Pest Management 17.3 Phytochemicals with Insecticidal Properties 17.4 Plant Proteins with Anti-Nutritional Effects on Insects 17.5 Microbial Insecticides 17.5.1 Entomopathogenic Bacteria 17.5.2 Entomopathogenic Actinomycetes 17.5.3 Entomopathogenic Fungi 17.5.4 Entomopathogenic Virus 17.5.5 Entomopathogenic Protozoa 17.5.6 Entomopathogenic Nematode 17.6 Semiochemicals 17.7 Attract and Reward Strategy 17.8 Push–Pull Strategy 17.9 Miscellaneous Compounds of Natural Origin 17.10 Conclusion and Future Perspective References 18: Bacillus thuringiensis as Potential Biocontrol Agent for Sustainable Agriculture 18.1 Introduction 18.2 Background 18.3 Developments of Bt Research 18.4 Prevalence and Genetic Diversity of Bt 18.4.1 The Bt Genome 18.4.1.1 The cry Genes 18.4.1.2 Genetic Diversity in Bt 18.4.2 Insecticidal Proteins of Bt 18.4.2.1 Classification of Bt Insecticidal Crystal Proteins 18.4.2.2 Crystal Morphology and Solubility 18.4.2.3 Structural Features of Crystal Proteins 18.4.2.4 Mode of Action (MOA) 18.4.3 Other Insecticidal Constituents of Bt 18.5 Bt as a Biocontrol Agent 18.5.1 Bt Formulations 18.5.2 Expression of cry Genes in Other Microorganisms 18.5.3 Expression of cry Genes from Bt in Plants through a Transgenic Approach 18.6 Development of Insect Resistance to Bt 18.6.1 Mechanism of Insect Resistance to Bt 18.6.2 Strategies for Management of Bt-Resistant Insect 18.6.3 Enhancing Toxicity of Cry Proteins 18.6.3.1 Potentiation of Cry Toxin Activity by Additional Proteins 18.6.3.2 Modifications in the Cry Toxin Gene 18.7 Conclusion and Future Prospectus References 19: Entomopathogenic Microbes for Sustainable Crop Protection: Future Perspectives 19.1 Introduction 19.2 Entomopathogenic Bacteria 19.2.1 Classification of Entomopathogenic Bacteria 19.2.1.1 Spore-Forming Bacteria 19.2.1.2 Non-spore-Forming Entomopathogenic Bacteria 19.2.2 Mode of Action of Entomopathogenic Bacteria 19.2.2.1 Crystal Proteins or Cry Toxins 19.2.2.2 Cytotoxic Proteins or Cyt Toxins 19.2.2.3 Vegetative Insecticidal Protein or Vip Proteins 19.2.2.4 Binary Toxins or Bin Toxins 19.3 Entomopathogenic Fungi 19.3.1 Mode of Action of Entomopathogenic Fungi 19.4 Entomopathogenic Nematodes 19.4.1 Mode of Action of Entomopathogenic Nematodes 19.5 Entomopathogenic Viruses 19.5.1 Classification of Entomopathogenic Viruses 19.5.1.1 Baculovirus (Nucleopolyhedrovirus [NPV]/Granulovirus [GV]) 19.5.1.2 Entomopoxvirus 19.5.1.3 Cypovirus (Cytoplasmic Polyhedrosis Virus) 19.5.1.4 Polydnavirus 19.5.1.5 Ascovirus 19.6 Safety and Ecotoxicology 19.7 Future Prospects References 20: Soil Microbes as Biopesticides: Agricultural Applications and Future Prospects 20.1 Introduction 20.2 Need of Biopesticides 20.3 Biopesticides 20.3.1 Microbial Pesticides 20.3.1.1 Bacteria 20.3.1.2 Fungi 20.3.1.3 Nematodes 20.3.1.4 Viruses 20.3.1.5 Protozoa 20.4 Potential Applications of Soil Microbes as Biopesticides 20.4.1 Bacteria as Biopesticides 20.4.2 Fungi as Biopesticide 20.4.3 Nematodes as Biopesticide 20.4.4 Virus as Biopesticide 20.4.5 Protozoa as Biopesticides 20.5 Conclusion and Future Prospects References 21: Biofertilizers for Agricultural Sustainability: Current Status and Future Challenges 21.1 Introduction 21.2 Biofertilizers and its Types 21.2.1 Bacterial Biofertilizers 21.2.1.1 Nitrogen-Fixing Bacteria Rhizobium Azospirillum Azotobacter 21.2.1.2 Phosphorus-Solubilizing Microbes 21.2.1.3 Phytohormones-Producing Microbes 21.2.1.4 Mineral-Solubilizing Microbes 21.2.2 Fungal Biofertilizers 21.2.2.1 Arbuscular Mycorrhizal Fungi 21.2.2.2 Other Fungi 21.2.3 Algal Biofertilizers 21.2.3.1 Blue-Green Algae 21.2.3.2 Cyanobacteria 21.3 Production of Biofertilizers 21.4 Methods Used for the Application of Biofertilizers 21.5 Precautions for Biofertilizers Applications 21.6 Advantages of Biofertilizers 21.7 Commercial Production and Release of Biofertilizers 21.8 Biotechnological Role of Biofertilizers 21.9 Challenges of Biofertilizers 21.10 Conclusion and Future Prospects References 22: Current Trends in Microbial Biotechnology for Agricultural Sustainability: Conclusion and Future Challenges References