دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2019] نویسندگان: Hemen Dutta, Ljubiša D. R. Kočinac, Hari M. Srivastava سری: ISBN (شابک) : 9783030152413, 9783030152420 ناشر: Springer International Publishing;Birkhäuser سال نشر: 2019 تعداد صفحات: XV, 909 [912] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Current Trends in Mathematical Analysis and Its Interdisciplinary Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روندهای کنونی در تحلیل ریاضی و کاربردهای بین رشته ای آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب چندین جنبه مهم از پیشرفتهای اخیر در کاربردهای بینرشتهای تحلیل ریاضی (MA) را بررسی میکند و چگونگی استفاده از MA در بسیاری از زمینههای تحقیقات علمی را برجسته میکند. هر یک از 23 فصل مورد بررسی دقیق توسط متخصص (ها) با تجربه در زمینه مربوطه نوشته شده است، و درک خوانندگان از مشکلات تحقیق مربوطه را غنی می کند و زمینه کافی برای درک نظریه ها، روش ها و کاربردهای مورد بحث را برای آنها فراهم می کند. هدف اصلی کتاب برجسته کردن آخرین گرایشها و پیشرفتها، تجهیز خوانندگان علاقهمند برای پیگیری تحقیقات بیشتر است.
با توجه به دامنه آن، این کتاب بهویژه برای دانشجویان فارغالتحصیل و دکترا، پژوهشگران علوم کاربردی مفید خواهد بود. ، مربیان و مهندسان علاقه مند به پیشرفت های اخیر در کاربردهای بین رشته ای تحلیل ریاضی.
This book explores several important aspects of recent developments in the interdisciplinary applications of mathematical analysis (MA), and highlights how MA is now being employed in many areas of scientific research. Each of the 23 carefully reviewed chapters was written by experienced expert(s) in respective field, and will enrich readers’ understanding of the respective research problems, providing them with sufficient background to understand the theories, methods and applications discussed. The book’s main goal is to highlight the latest trends and advances, equipping interested readers to pursue further research of their own.
Given its scope, the book will especially benefit graduate and PhD students, researchers in the applied sciences, educators, and engineers with an interest in recent developments in the interdisciplinary applications of mathematical analysis.
Preface Contents Contributors 1 Frictional Contact Problems for Steady Flow of Incompressible Fluids in Orlicz Spaces 1.1 Introduction 1.2 Preliminaries 1.2.1 Operators of Monotone Type 1.2.2 Orlicz and Orlicz–Sobolev Spaces 1.2.3 Generalized Gradient 1.3 Subdifferential Operator Inclusions 1.4 Hemivariational Inequalities 1.4.1 Tangential Superpotential 1.4.2 Normal Superpotential 1.5 Steady Flows of Non-Newtonian Fluids Under Slip Boundary Conditions of Frictional Type 1.5.1 Existence and Uniqueness 1.5.1.1 Setting of the Flow Problem 1.5.1.2 Weak Formulation and Main Result 1.5.2 Slow Flows 1.6 Steady Flows of Newtonian Fluids Under Leak Boundary Conditions of Frictional Type 1.6.1 Existence and Uniqueness 1.6.1.1 Setting of the Flow Problem 1.6.1.2 Weak Formulation and Main Result 1.6.2 Slow Flows 1.6.3 Optimal Control Problem 1.6.3.1 Continuous Dependence on External Forces 1.6.3.2 Optimal Control Problem 1.7 Concluding Remarks References 2 Discrete Fourier Transform and Theta Function Identities 2.1 Introduction 2.2 Spectral Theory of Discrete Fourier Transform 2.2.1 The Discrete Fourier Transform 2.2.2 Spectral Decomposition of the Matrix or Operator Roots of Unity 2.2.3 Eigenvectors of (n) 2.2.4 Eigenvectors of the DFT from Any Absolutely Summable Series 2.3 DFT (2) and Jacobi Theta Function Identities 2.3.1 Jacobi Theta Functions 2.3.2 DFT and Theta Functions 2.3.3 DFT (2) and Jacobi Theta Function Identities 2.3.4 The Identity θ4(0,τ)- θ40,12(0,τ) = θ12,04(0,τ) 2.3.5 Extended Watson Addition Formula 2.3.6 Riemann\'s Identity 2.4 DFT (3) and Theta Function Identities 2.4.1 θa,b(x,τ) with a,b 13Z and (3) 2.4.2 Extended Watson Addition Formula Corresponding to (3) 2.4.3 Extended Riemann\'s Identity Corresponding to (3) References 3 On Some Combinatorics of Rogers–Ramanujan Type Identities Using Signed Color Partitions 3.1 Introduction 3.2 Main Proof 3.3 Conclusion References 4 Piecewise Continuous Stepanov-Like Almost Automorphic Functions with Applications to Impulsive Systems 4.1 Introduction 4.2 Preliminaries 4.3 Composition Theorem 4.4 Impulsive Delay Differential Equations 4.5 Examples 4.6 Discussion References 5 On the Convergence of Secant-Like Methods 5.1 Introduction 5.2 Preliminaries 5.3 Convergence of Secant-Like Methods for Fréchet Differentiable Operators 5.3.1 Divided Differences of First Order Lipschitz Continuous 5.3.2 Divided Differences of First Order Hölder Continuous 5.3.3 Application: A Special Case of Conservative Problems 5.3.3.1 Existence of the Solution 5.3.3.2 Location of the Solution 5.3.3.3 Numerical Solution of the Finite-Difference Equations 5.3.3.4 Final Remark 5.4 Convergence of Secant-Like Methods for Non-Differentiable Operators 5.4.1 Numerical Example 5.5 Convergence of Secant-Like Methods Whatever the Operator 5.5.1 A Semilocal Convergence Result 5.5.2 Applications 5.5.2.1 Example 1 5.5.2.2 Example 2 5.6 Convergence for the Secant-Like Methods from Auxiliary Points 5.6.1 Local Convergence Analysis Remarks 1 5.6.2 Semilocal Convergence Analysis Remarks 2 5.6.3 Numerical Example References 6 Spacetimes as Topological Spaces, and the Need to Take Methods of General Topology More Seriously 6.1 Introduction 6.1.1 The Manifold Topology vs. Finer or Incomparable Topologies 6.1.2 On Name-Giving and Notation 6.2 Topologies Coarser Than or Equal to the Manifold Topology 6.3 The Class Z of Zeeman-Göbel Topologies 6.4 Topologies Different Than the Manifold Topology 6.5 In the Beginning Was the Metric…or the Topology? 6.6 Ambient Cosmology: A Failure Due to a Topological Misconception 6.7 Towards an Evolving Topology and a Quantum Theory of Gravity 6.8 The Need to Take Methods of General Topology More Seriously References 7 Analysis of Generalized BBM Equations: Symmetry Groups and Conservation Laws 7.1 Introduction 7.2 Lie Point Symmetries 7.2.1 Lie Point Symmetries of Eq.(7.12) 7.2.2 Lie Point Symmetries of Eq.(7.13) 7.3 Optimal System 7.3.1 Optimal System for Eq.(7.12) 7.3.2 Optimal System for Eq.(7.13) 7.4 Reductions and Exact Solutions 7.4.1 Reductions for Eq.(7.12) 7.4.2 Reductions for Eq.(7.13) 7.5 Travelling Waves 7.6 Conservation Laws 7.7 Potential Symmetries 7.8 Conclusions References 8 Symmetry Analysis and Conservation Laws for Some Boussinesq Equations with Damping Terms 8.1 Introduction 8.2 Lie Classical Symmetries and Reductions 8.2.1 Lie Symmetries and Reductions for Eq.(8.4) 8.2.2 Lie Symmetries and Reductions for Eq.(8.5) 8.3 Multiplier Conservation Laws Method 8.3.1 Multipliers and Conservation Laws for Eq.(8.4) Conservation Laws 8.3.2 Multipliers and Conservation Laws for Eq.(8.5) Conservation Laws 8.4 Double Reduction Method and Exact Solutions 8.5 Conclusions References 9 On Some Variable Exponent Problems with No-Flux Boundary Condition 9.1 Introduction 9.2 Functional Framework 9.3 Critical Point Tools 9.4 Problems with (Isotropic) Variable Exponent 9.5 Problems with Anisotropic Variable Exponent 9.6 Final Comments References 10 On the General Decay for a System of Viscoelastic Wave Equations 10.1 Introduction 10.2 Preliminaries 10.3 Technical Lemmas 10.4 General Decay Result References 11 Mathematical Theory of Incompressible Flows: Local Existence, Uniqueness, and Blow-Up of Solutions in Sobolev–Gevrey Spaces 11.1 Local Existence and Uniqueness of Solutions 11.2 Blow-Up Criteria for the Solution 11.2.1 Limit Superior Related to Hsa,σ(R3) 11.2.2 Blow-Up of the Integral Related to L1(R3) 11.2.3 Blow-Up Inequality Involving L1(R3) 11.2.4 Blow-Up Inequality Involving Hsa,σ(R3) 11.2.5 Generalization of the Blow-Up Criteria 11.2.6 Main Blow-Up Criterion Involving Hsa,σ(R3) References 12 Mathematical Research for Models Which is Related to Chemotaxis System 12.1 Introduction 12.2 The (Quasilinear) Keller–Segel Model 12.2.1 The Quasilinear Parabolic–Elliptic Keller–Segel System (τ=0) 12.2.2 The Quasilinear Parabolic–Parabolic Keller–Segel System (τ=1) 12.3 The (Quasilinear) Chemotaxis System with Consumption of Chemoattractant 12.3.1 A Priori Estimates 12.4 The (Quasilinear) Chemotaxis–Haptotaxis Model 12.5 The (Quasilinear) Keller–Segel–Navier–Stokes System 12.5.1 Preliminaries and Theorems 12.5.2 A Priori Estimates 12.5.3 The Global Solvability of Regularized Problem (12.5.13) 12.5.3.1 Regularity Properties of Time Derivatives 12.5.3.2 Passing to the Limit: Proof of Theorem 12.5.1 12.6 Open Problem References 13 Optimal Control of Quasivariational Inequalities with Applications to Contact Mechanics 13.1 Introduction 13.2 Quasivariational Inequalities 13.2.1 Notation and Preliminaries 13.2.2 Existence and Uniqueness 13.2.3 A Convergence Result 13.3 Optimal Control of Quasivariational Inequalities 13.3.1 Existence of Optimal Pairs 13.3.2 Convergence of Optimal Pairs 13.3.3 A Relevant Particular Case 13.4 A Frictional Contact Problem 13.4.1 Function Spaces 13.4.2 The Model 13.4.3 Weak Solvability 13.4.4 Optimal Control 13.4.5 A One-Dimensional Example 13.5 Conclusion References 14 On Generalized Derivative Sampling Series Expansion 14.1 Introduction and Motivation 14.2 Master Sampling Theorem for Deterministic Signals 14.3 Discussion of Certain Special Cases 14.4 Brief Invitation to Piranashvili Processes 14.5 Master Sampling Theorem for Stochastic Signals 14.6 Generalized Sampling Series for Random Fields References 15 Voronoi Polygonal Hybrid Finite Elements and Their Applications 15.1 Introduction 15.2 Basics of Voronoi Polygons 15.3 Formulations of Polygonal Hybrid Finite Element 15.3.1 Governing Equations 15.3.2 Mesh Discretization 15.3.3 Displacement Interpolations 15.3.4 Double-Variable Hybrid Functional 15.3.4.1 Stationary Condition of the Proposed Variational Functional 15.3.4.2 Theorem on the Existence of Extremum 15.3.5 Formation of Resulting Linear Equations 15.3.5.1 Element Equations 15.3.5.2 Assembly of Global Equation 15.3.5.3 Imposition of Displacement Constraints 15.3.6 Recovery of Rigid-Body Motion 15.3.7 Algorithm for Implementing the Solution Procedure 15.4 Applications 15.4.1 Cook\'s Problem 15.4.2 Thick Cylinder Under Internal Pressure 15.4.3 Infinite Plate with a Centered Elliptical Hole Under Tension 15.5 Conclusions References 16 Variational Methods for Schrödinger Type Equations 16.1 Introduction 16.2 Background Material 16.2.1 Recalling Sobolev Spaces 16.2.2 Basic Notions of Differential Calculus in Hilbert Spaces 16.2.3 The Ljusternick-Schnirelmann Category 16.2.4 Schrödinger Type Equations 16.3 The Case of Given Potential: The Fractional Schrödinger Equation 16.3.1 The Variational Setting 16.3.2 Compactness for I and Eμ: Existence of a Ground State Solution 16.3.3 The Barycenter Map 16.3.4 Proof of Theorem 16.3.2 16.4 The Case of Unknown Potential: The Fractional Schrödinger-Poisson System 16.4.1 The Variational Setting 16.4.1.1 The Problem at ``Infinity\'\' 16.4.2 Compactness for I and Eμ: Existence of a Ground State Solution 16.4.3 The Barycenter Map 16.4.4 Proof of Theorem 16.4.2 References 17 Nonlinear Nonhomogeneous Elliptic Problems 17.1 Introduction 17.2 Regularity and Auxiliary Results 17.3 Maximum Principle: Comparison Results 17.4 Eigenvalue Problems 17.5 Superlinear Problems 17.6 Nodal Solutions 17.7 Dirichlet (p,2)-Equations 17.8 Remarks References 18 Summability of Double Sequences and Double Series Over Non-Archimedean Fields: A Survey 18.1 Double Sequences and Double Series 18.2 Silverman–Toeplitz, Schur, and Steinhaus Theorems 18.3 Characterization of 2-Dimensional Schur Matrices 18.4 The Nörlund Method for Double Sequences 18.5 Weighted Mean Method for Double Sequences 18.6 (M, λm,n) Method (or Natarajan Method) for Double Sequences References 19 On Approximate Solutions of Linear and Nonlinear Singular Integral Equations 19.1 Introduction 19.2 Newton–Kantorovich Method for Two-Dimensional Nonlinear Singular Integral Equations 19.2.1 Newton–Kantorovich Method for Eq.(19.1) 19.3 Some Integral Operators in Holder Space 19.3.1 Some Properties of the Integral Operator (19.27) 19.3.2 Existence of the Solutions due to Banach Contraction Principle 19.4 Fixed Point Theory and Approximate Solutions of Nonlinear Singular Integral Equations 19.4.1 On the Solution of Nonlinear Singular Integral Equations 19.5 Nonlinear Singular Integro-Differential Equations 19.5.1 On the Solution of Eq.(19.65) 19.6 The Collocation Method for the Solution of Boundary Integral Equations 19.6.1 On the Existence and Uniqueness of the Solution 19.6.2 Collocation Method 19.7 On the Approximate Solution of Singular Integral Equations with Negative Index 19.7.1 Collocation Method 19.7.2 Conclusions for Sect.19.7 References 20 On Difference Double Sequences and Their Applications 20.1 Introduction 20.2 Definitions 20.3 Related Difference Double Sequence Spaces 20.4 Applications References 21 Pointwise Convergence Analysis for Nonlinear Double m-Singular Integral Operators 21.1 Introduction 21.2 Preliminaries 21.3 Pointwise Convergence 21.4 Fatou Type Convergence 21.5 Rate of Convergence 21.6 Concluding Remarks References 22 A Survey on p-Adic Integrals 22.1 Introduction 22.2 p-Adic Integrals on Z p 22.2.1 Volkenborn Integral and Its Some Properties 22.2.2 Fermionic p-Adic Integral and Its Some Properties 22.3 p-Adic q-Integrals on Z p 22.3.1 q-Volkenborn Integral and Its Some Properties 22.3.2 Fermionic p-Adic q-Integral and Its Some Properties 22.4 Weighted p-Adic Integrals on Z p 22.4.1 (α,β)-Volkenborn Integral and Its Some Properties 22.4.1.1 The q-Daehee Polynomials with Weight ( α,β) 22.4.2 (α,β)-Fermionic Integral and Its Some Properties 22.4.2.1 The q-Changhee Polynomials with Weight ( α,β) 22.4.2.2 The q-Boole Polynomials with Weight ( α,β) 22.5 Conclusion References 23 On Statistical Deferred Cesàro Summability 23.1 Introduction 23.2 Cesàro and Deferred Cesàro Summability Methods 23.3 A Korovkin-Type Theorem 23.4 Rate of Statistical Deferred Cesàro Summability 23.5 Concluding Remarks and Observations References