دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Angelo Basile (editor). Kamran Ghasemzadeh (editor)
سری:
ISBN (شابک) : 0444638660, 9780444638663
ناشر: Elsevier
سال نشر: 2017
تعداد صفحات: 253
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Current Trends and Future Developments on (Bio-) Membranes: Silica Membranes: Preparation, Modelling, Application, and Commercialization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روندهای فعلی و تحولات آتی در مورد غشاهای (زیستی): غشاهای سیلیسی: آماده سازی، مدل سازی، کاربرد و تجاری سازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
روندهای فعلی و پیشرفتهای آتی در مورد غشاهای (زیستی): غشاهای سیلیسی: آمادهسازی، مدلسازی، کاربرد و تجاریسازی یکی از امیدوارکنندهترین غشاهای معدنی، یعنی غشاهای سیلیسی، و کاربردهای مختلف آنها را مورد بحث قرار میدهد. .
در زمینه فناوری جداسازی غشا، غشاهای سیلیسی به عنوان یکی از امیدوارکنندهترین جایگزینها برای جداسازی در دماهای بالا و محیطهای تهاجمی، نقش کلیدی در آینده صنعت شیمیایی بازی میکنند.
این کتاب به جزئیات آخرین یافتههای تحقیقاتی، همراه با کاربردهای صنعتی بالقوه منطقهای میپردازد که به دلیل ضرورت جداسازی گاز و فرآیندهای تصفیه آب، فعالیتهای تحقیقاتی فزایندهای بر روی انواع غشاها داشته است. بسیاری از شرکت های صنعتی و مراکز دانشگاهی علاقه زیادی به یادگیری در مورد بهترین استراتژی ها برای انجام این فرآیندها پیدا می کنند.
Current Trends and Future Developments on (Bio-) Membranes: Silica Membranes: Preparation, Modelling, Application, and Commercialization discusses one of the most promising inorganic membranes, namely silica membranes, and their different applications.
In the field of membrane separation technology, silica membranes play a key role in the future of the chemical industry as one of the most promising alternatives for separations at high temperatures and aggressive media.
This book details the latest research findings, along with the potential industrial applications of an area that has seen growing research activity on various type of membranes due to the necessity of gas separation and water treatment processes. Many industrial companies and academic centers will find immense interest in learning about the best strategies for carrying out these processes.
Cover Current Trends and Future Developments on (Bio-) Membranes: Membrane Applications in Artificial Organs and Tissue Engineering Copyright Contributors Preface 1 Artificial kidney: A chemical engineering challenge Introduction Historical perspective Transport properties of membranes for artificial kidney Compartmental modeling for artificial kidney Membrane modules for renal replacement therapy Water quality management in artificial kidney The future of renal replacement therapy: Bioartificial kidney and implantable artificial kidney Conclusions and future trends References 2 Membrane application for liver support devices Introduction Liver support devices Development of blood purification systems Artificial devices Hemofiltration Hemoperfusion Reactors with immobilized enzymes Plasma exchange Hemodiafiltration Plasma exchange and continuous hemodiafiltration Molecular therapy of the absorbent recirculation system Prometheus Bioartificial devices Cellular sources Types of hepatocyte culture systems Types of bioreactor Tissue engineering Implantable engineered tissue for humanized mouse models Implantable therapeutic engineered liver tissue Design criteria for implantable systems Natural scaffold chemistry and modifications Conclusion and future trends References 3 Membrane bioreactors for (bio-)artificial lung Introduction Milestones in ECMO development to date Limitations of ECMO / ECLS Computational fluid dynamics for the optimization of the oxygenator design Surface treatments for improving the hemocompatibility of blood contacting surfaces in ECMO circuits Biohybrid/bioartificial approaches Wearable or implantable artificial lung The implantable artificial lung The development of microfluidic artificial lungs Tissue engineered lungs Conclusions and future trends References 4 Membrane bioreactors for bio-artificial pancreas Introduction: The pancreas Anatomy and physiology Mechanisms of glycemic regulation Physiopathology and treatment The concept of bioartificial pancreas Overview of the specificities of currently developed BAP Number and potential sources of pancreatic islets Mass transfer issues in BAP and implantation site Intravascular systems combining convection and diffusion Design and limits of perfusion chambers Direct perfusion of encapsulated islets implanted in vascularized organs Diffusion-based extravascular systems Omental pouch and intraperitoneal transplantation Kidney capsule Subcutaneous tissues Porous scaffolds—Membranes Conclusions and future trends References 5 Membrane devices for blood separation and purification Introduction Requirements for an effective apheresis Main differences between centrifugation and filtration systems Centrifugal systems Membrane systems Mixed systems: Membranes and centrifuges Discontinuous and continuous flow systems Apheresis techniques Plasma exchange Semiselective plasmas (plasma separation through secondary membranes, or double filtration or cascade filtration) Selective plasma tracking (selective absorption) Apheresis of lipidic proteins Cytoapheresis Therapeutic cytoapheresis Donations of autologous or allogeneic blood components Conclusion and future trends References 6 Numerical prediction of blood damage in membrane-based biomedical assist devices Introduction Properties of red blood cells Red blood cell structure Mechanical properties Phenomenology of hemolysis and blood damage Quantification of blood damage Experimental data on blood damage Current modeling approaches for blood damage prediction Stress-based models Threshold models Continuous models Limitations of empirical stress-based models Time-variable stresses Multicomponent stresses Flow in ducts Strain-based models RBC deformation Hemoglobin release Conclusions and future trends List of acronyms List of symbols Latin symbols Greek symbols References Further reading 7 Membrane scaffolds for 3D cell culture Membrane scaffolds for tissue engineering applications Tissue engineering principles Application of tissue engineering methods for 3D cell culture Prerequisites of membranes for 3D cell culture Biomaterials for membranes fabrication Natural origin Synthetic polymers Methods of membranes fabrication Conventional techniques Freeze drying Phase separation Particle leaching Biofabrication methods for membranes in tissue engineering Powder-based 3D printing Extrusion techniques Direct 3D printing Fused deposition modeling 3D plotting Electrospinning Use of membranes for cell culture in tissue engineering Limits of conventional tissue engineering Layer-by-layer bioassembly of cellularized membranes for tissue engineering Conclusions and future trends References 8 Artificial oxygen carriers Introduction Oxygen is both: A blessing and a curse The role of AOCs in the context of artificial organs and tissue engineering Why has evolution developed such strategies? Considerations addressing Δ x Considerations addressing Δ c Relevant types of AOCs Hemoglobin-based AOCs Peculiarities and principle of oxygen transport Limitations Stage of development of relevant HBOCs Clinical data/clinical trials Pipeline (preclinical data) Perfluorocarbon-based AOCs Peculiarities and principle of oxygen transport Limitations Stage of development of relevant PFOCs Clinical data/clinical trials Pipeline (preclinical data) Conclusions and future trends Conflict of interest References 9 Membrane bioreactors for digestive system to study drugs absorption and bioavailability Introduction Anatomy of the GI tract Physiology of the GI tract Stomach Duodenum Jejunum Ileum and colon Modeling of drugs’ absorption and bioavailability Single and two-compartment models Five-compartments model Parameters and conditions Parameter estimation Model simulations Conclusion and future trends References Index A B C D E F G H I J K L M N O P R S T U V W X Back Cover