دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Giorgio Mannina, Ashok Pandey, Ranjna Sirohi سری: ISBN (شابک) : 0323999204, 9780323999205 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 454 [455] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت تبدیل فایل کتاب Current Developments in Biotechnology and Bioengineering: Smart Solutions for Wastewater: Road-mapping the Transition to Circular Economy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحولات کنونی در بیوتکنولوژی و مهندسی زیستی: راه حل های هوشمند برای فاضلاب: نقشه راه گذار به اقتصاد دایره ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راه حل های هوشمند برای فاضلاب: نقشه راه انتقال به اقتصاد دایره ای، آخرین نسخه در تحولات کنونی در بیوتکنولوژی و مهندسی زیستی اطلاعات به روزی را در مورد تحقیقات و پیشرفت های فناوری بازیابی منابع در تصفیه فاضلاب از نظر کربن، مواد مغذی و انرژی. این کتاب شکافها و چالشهای فعلی را که مانع استفاده از تسهیلات بازیابی منابع در تصفیهخانههای فاضلاب میشوند را برآورده میکند، شکافهای دانش را مورد بحث قرار میدهد، دیدگاههای تحقیقاتی آینده را ارائه میدهد و استراتژیهایی را برای حل مشکلات از منظر اقتصاد دایرهای مورد بحث قرار میدهد. این یک مرور کلی عالی، بین رشته ای و به روز از فناوری ها از نظر بازده بالقوه، حذف آلاینده ها، بازیابی مواد مغذی و تولید انرژی است. پوشش جنبههای مختلف فناوریهای بازیابی منابع و شکافهای تحقیقاتی در تصفیه فاضلاب. تمرکز بر پیکربندیهای مختلف MBR و سیستمها/سیستمهای هیبریدی در تصفیه طیف وسیعی از فاضلابها. استراتژیهایی برای غلبه بر محدودیتها شامل فنآوریهایی برای مدیریت لجن فاضلاب به منظور ایجاد راهحلهایی برای بازیابی در زمینه اقتصاد دایرهای است.
Smart Solutions for Wastewater: Road-mapping the Transition to Circular Economy, the latest release in the Current Developments in Biotechnology and Bioengineering presents up-to-date information on research and technological developments of resource recovery in wastewater treatment in terms of carbon, nutrients and energy. The book fulfils the gaps and current challenges that hinder the application of resource recovery facilities in wastewater treatment plants, discusses knowledge gaps, provides future research perspectives, and discusses strategies to solve problems from a circular economy perspective. It is an excellent, interdisciplinary and updated overview of technologies in terms of potential yields, pollutants removal, nutrients recovery and energy production. Covers different aspects of resource recovery technologies and research gaps in wastewater treatment Focuses on different MBR configurations and systems/hybrid systems in treating a large variety of wastewaters Provides state-of-the-art technology developments, including technology, advantages and challenges as well as strategies to overcome limitations Includes technologies for managing sewage sludge in order to foster solutions for recovering in a circular economy context
Cover Contents Contributors Preface 1 - Introduction to smart solutions for wastewater: Road-mapping the transition to circular economy 1.1 Introduction 1.2 Water-smart solutions to enhance the transition to circular economy 1.3 Conclusions and perspectives Acknowledgments References 2 - Treatment and disposal of sewage sludge from wastewater in a circular economy perspective 2.1 Introduction 2.2 European laws 2.2.1 European directives on SS and wastewater treatments 2.2.2 Revision of the SSD 2.3 SS management 2.3.1 Increase in the SS production 2.3.2 SS disposal and costs 2.3.3 Environmental impact 2.4 SS reuse 2.4.1 Land applications 2.4.2 Energy recovery 2.4.3 Construction materials 2.4.4 Drawbacks and limitations 2.5 Conclusions and perspectives Acknowledgements References 3 - Integration of polyhydroxyalkanoates (PHAs) production into urban wastewater treatment plants 3.1 Introduction 3.2 PHAs: biobased and biodegradable alternative to plastics 3.2.1 Properties and applications 3.2.2 Current industrial production methods and developments 3.3 A circular economy approach: PHA production integrated into WWTPs 3.4 A detailed view of the independent PEs for PHA production by using MMCs 3.4.1 Substrate acidogenic fermentation (PE1) 3.4.2 Culture selection (PE2) 3.4.3 PHA accumulation (PE3) 3.5 PHAs extraction from microbial cells (PE4) 3.5.1 Solvent extraction 3.5.2 NPCM digestion 3.5.3 Influence of the type of extraction on polymer properties 3.6 Economic sustainability of PHAs production process 3.7 Conclusions and perspectives Acknowledgments References 4 - Production of volatile fatty acids from sewage sludge fermentation 4.1 Introduction 4.2 Biological mechanism and strategies for VFA production from sewage sludge 4.2.1 Biological mechanism of sludge anaerobic fermentation 4.2.2 Influence of key operational conditions on VFA production 4.2.2.1 Influence of temperature 4.2.2.2 Influence of pH 4.2.2.3 Influence of retention time 4.2.2.4 Influence of OLR 4.2.2.5 Influence of other factors 4.2.3 Influence of sludge composition and carbon to nitrogen (C/N) ratio on VFA production 4.2.4 Control strategies for enhancing VFA production 4.2.4.1 Hydrolysis improvement 4.2.4.2 Acidification enhancement 4.2.4.3 Methanogenesis inhibition 4.3 Trends and innovations in VFA production from sewage sludge 4.3.1 Sludge pretreatments 4.3.1.1 Chemical pretreatments 4.3.1.2 Physical pretreatments 4.3.1.3 Biological pretreatments 4.3.1.4 Hybrid pretreatments 4.3.2 Fermentation reactor configurations 4.3.3 Enhanced strategies for VFA production from sludge fermentation 4.4 Final applications of sludge-derived VFA and economic evaluation 4.4.1 Sludge-derived VFA applications 4.4.1.1 Carbon source for nutrient removal in WWTP 4.4.1.2 Polyhydroxyalkanoates production 4.4.2 Economical evaluation of VFA production from sewage sludge 4.5 Conclusions and perspectives Acknowledgments References 5 - Zeolites for the nutrient recovery from wastewater 5.1 Introduction 5.2 Structure and chemical composition of zeolites 5.2.1 Chemical composition and structure of zeolites 5.2.1.1 Primary and secondary building units of zeolites 5.2.1.2 Pores, cages, and channels 5.2.1.3 Cation exchange capacity of zeolites 5.2.1.4 Selectivity of zeolites 5.3 Natural zeolites and synthetic zeolites 5.3.1 Natural zeolites 5.3.1.1 Most important natural zeolites Clinoptilolite-heulandite Chabazite Phillipsite 5.3.2 Synthetic zeolites 5.3.2.1 Most important synthetic zeolites Zeolite A Zeolite X and zeolite Y Zeolite ZMS-5 5.4 Applications of zeolites 5.4.1 Catalysis 5.4.2 Agriculture 5.4.3 Industrial wastewater treatment 5.5 Use of zeolite for nutrients recovery 5.5.1 Nutrients recovery mechanism 5.5.2 Regeneration of zeolites 5.5.3 Reuse of enriched zeolites 5.6 Conclusions and perspectives Acknowledgments References 6 - Wastewater treatment sludge composting 6.1 Introduction 6.2 Legislation about sewage sludge 6.2.1 European legislation 6.2.1.1 Directive 86/278/CEE 6.2.1.2 Revisions of Directive 86/278/EEC 6.2.1.3 Regulation (EU) 2019/1009 6.2.2 Italian legislation 6.2.2.1 Legislative Decree 99/92 6.2.2.2 Art. 41 of the Legislative Decree No. 109/2018 6.2.2.3 Upcoming regulatory developments for sludge in agriculture 6.2.3 Sewage Sludge legislation in other countries 6.3 Sewage sludge composting 6.3.1 Composting 6.3.2 Bulking agents 6.3.3 Reuse of composted sewage sludge 6.4 Conclusions and perspectives Acknowledgments References 7 - Advances in technologies for sewage sludge management 7.1 Introduction 7.2 Technologies in water treatment line 7.2.1 Minimization technologies 7.2.1.1 Chemical treatment 7.2.1.2 Mechanical treatment 7.2.1.3 Thermal treatment 7.2.1.4 Biological treatment 7.3 Technologies in sludge treatment line 7.3.1 Sludge pretreatment 7.3.1.1 Physical 7.3.1.2 Chemical 7.3.1.3 Biological 7.3.2 Advanced digestion technologies 7.3.3 Dewatering process 7.3.4 Sludge drying 7.3.5 Thermal processes 7.3.5.1 Conventional thermal processes 7.3.5.2 Hydrothermal carbonization (HTC) 7.4 Evaluation and maturity of technologies for reducing sludge production 7.5 Sludge characterization to optimize the dewatering process 7.6 Conclusions and perspectives Acknowledgements References 8 - Energy and valuable organic products recovery from anaerobic processes 8.1 Introduction 8.2 Energy balance in wastewater treatment plants and potential energy recovery 8.3 Potential valuable products recovery 8.4 Anaerobic processes focused on liquid products recovery 8.4.1 Production of volatile fatty acids 8.4.2 Production of medium chain carboxylic acids 8.5 Anaerobic digestion (AD) processes focused on gaseous products recovery 8.5.1 Factors affecting AD 8.5.2 Biogas characteristics, use and upgrading 8.5.3 Other implications 8.5.3.1 Regulations and policies 8.5.3.2 Economic implications 8.6 Processes enhancing energy and valuable organic products recovery 8.6.1 Enhanced removal of suspended solids in primary clarifiers 8.6.2 Sludge pretreatment 8.6.2.1 Physical pretreatment methods 8.6.2.2 Thermal pretreatment methods 8.6.2.3 Chemical pretreatment methods 8.6.3 Co-digestion of sewage sludge with organic waste 8.6.3.1 Co-digestion for gaseous products recovery 8.6.3.2 Co-digestion for liquid products recovery 8.7 Conclusions and perspectives References 9 - Life-cycle assessment for resource recovery facilities in the wastewater sector 9.1 Introduction 9.2 Life-cycle analysis (LCA) as an environmental impact assessment methodology 9.2.1 Defining the goal and scope as a starting point in environmental assessment 9.2.2 Not all decentralized treatments are identical: selecting options on a case-by-case basis 9.2.2.1 Combination of BW, KW, and GW treatments for a pellet biofertilizer manufacturing 9.2.2.2 A simplistic option: focus on the BW treatment 9.2.2.3 Approaching BW, KW, and GW treatments P-recovery as struvite 9.2.3 Three decentralized-centralized combination options in the sludge line 9.2.3.1 Conventional sludge treatment: hydroxyapatite recovery 9.2.3.2 Renanite production from sludge incineration 9.2.3.3 Nutrients recovery from sludge as struvite after thermal disintegration and anaerobic digestion 9.2.4 Summary of configurations 9.2.5 Moving forwards in the environmental assessment through primary and secondary data collection 9.2.6 Turning inventory data into global environmental impacts 9.3 Environmental diagnosis of the different alternatives based on the environmental outcomes 9.3.1 Comparative environmental profiles between configurations 9.3.2 Water line-based phosphorus recovery configurations 9.3.3 Sludge line-based phosphorus recovery configurations 9.4 Conclusions and perspectives Acknowledgements References 10 - Water reuse in the frame of circular economy 10.1 Introduction 10.2 Legal framework of water reuse 10.2.1 Global water reuse guidelines and regulations 10.2.1.1 World Health Organization (WHO) 10.2.1.2 United Nations Environment Programme (UNEP) 10.2.1.3 Food and Agriculture Organization (FAO) 10.3 Worldwide used national water reuse guidelines and regulations 10.3.1 US Environmental Protection Agency 2012, “Guidelines for Water Reuse,” EPA/600/R-12/618 10.4 National water reuse guidelines and regulations in selected EU countries 10.4.1 European Union water reuse legislation 10.4.1.1 The purpose and scope of the Regulation 10.4.1.2 Principal articles of the EU regulation No. 2020/741 Annex I Annex II 10.4.2 International ISO standards 10.4.2.1 ISO 20670:2018 10.4.2.2 ISO 16075-1:2020 10.4.2.3 ISO 16075-2:2020 10.4.2.4 ISO 16075-3:2021 10.4.2.5 ISO 16075-4:2021 10.4.2.6 ISO 16075-5:2021 10.4.2.7 ISO/AWI 16075-6 10.4.2.8 ISO 20419:2018 10.4.2.9 ISO 20469:2018 10.4.2.10 ISO 20761:2018 10.4.2.11 ISO 20426:2018 10.4.3 European standards 10.4.4 Summary 10.5 Drivers for water reuse: water resources scarcity and climate change; increasing quality and prize of drinking water; ... 10.5.1 Climate change and water resources 10.5.2 Water and climate stakeholder analysis 10.5.2.1 Agriculture 10.5.2.2 Energy production industry 10.5.2.3 Drinking water production 10.5.2.4 Other industries 10.5.2.5 Ecosystems 10.6 Circular economy and water resources 10.7 Barriers of water reuse 10.7.1 Barriers to water reuse implementation in general 10.7.2 Safety barriers 10.7.3 Economy of water reuse 10.7.4 Public perception 10.7.5 Wider uptake of water-smart solutions project in Prague, CZ 10.8 Processes of recycled water production from effluents of municipal WWTPS 10.8.1 Design of treatment process for recycled water production from effluents of municipal WWTPs 10.8.2 Suspended solids and residual organics 10.8.2.1 Filtration 10.8.2.2 Coagulation and sedimentation 10.8.2.3 Membrane filtration 10.8.2.4 Other methods 10.8.3 Pathogenic microorganisms 10.8.3.1 Chlorination 10.8.3.2 Ultraviolet (UV) irradiation 10.8.3.3 Peracetic acid (PAA) 10.8.4 Micropollutants 10.8.4.1 Sorption to activated carbon 10.8.4.2 Advanced oxidation processes and ozonation 10.8.4.3 High-pressure membrane processes 10.9 Examples of successful water reuse projects in Europe 10.9.1 Overall situation of water recycling in Europe 10.9.2 Environmental purposes 10.9.2.1 Milano – two wastewater treatment plants supplying agricultural use in the large Lombardy region 10.9.2.2 Barcelona – combination of water recycling and desalination for environmental purposes 10.9.2.3 Irrigation of golf courses in Europe 10.9.3 Urban use 10.9.3.1 Disneyland Paris – recycled water use in an amusement park 10.9.3.2 London – Queen Elizabeth Olympic Park 10.9.3.3 Lisbon – multipurpose urban use 10.9.4 Industrial use 10.9.4.1 Madrid – not only industrial use 10.9.5 Conclusions of examples of successful water reuse projects in Europe 10.10 Conclusions and perspectives Acknowledgments References 11 - Governance factors influencing the scope for circular water solutions 11.1 Introduction 11.2 Toward a new paradigm 11.3 Perceived governance challenges 11.4 A multilevel approach 11.5 Main drivers and barriers in the studied cases 11.5.1 Water reuse in Sicily, the Czech Republic, and Ghana 11.5.1.1 Pressures at the wider contexts level 11.5.1.2 Tensions and lock-ins at the structural level 11.5.1.3 Conducive and unconducive factors at the case-specific level 11.5.2 Phosphorus recovery in Norway 11.5.2.1 Pressures at the wider contexts level 11.5.2.2 Tensions and lock-ins at the structural level 11.5.2.3 Conducive and unconducive factors at the case-specific level 11.5.3 Biocomposite production in the Netherlands 11.5.3.1 Pressures at the wider contexts level 11.5.3.2 Tensions and lock-ins at the structural level 11.5.3.3 Conducive and unconducive factors at the case-specific level 11.6 Contextual interactions and need for new governance perspectives 11.6.1 Complex pressures changing over time 11.6.2 Similarities and differences at the structural context level 11.6.3 Case-specific opportunities and challenges 11.6.4 Need for system perspective in governance for water CE 11.7 Conclusions and perspectives Acknowledgments Appendix: List of abbreviations References 12 - Advances in environmental bioprocess technology for an effective transition to a green circular economy 12.1 Introduction 12.2 Promising biobased products for resource recovery at WWTPs 12.2.1 Short-chain and medium-chain fatty acids 12.2.1.1 Up-stream applications 12.2.1.2 Poststream applications Biopolymers Single-cell protein Bioenergy 12.2.2 Enzyme recovery 12.3 Manipulation of microbial community performance for resource recovery 12.3.1 Bioaugmentation 12.3.2 Enrichment 12.3.3 Encapsulation technology 12.4 Conclusions and perspectives References 13 - Advanced technologies for a smart and integrated control of odour emissions from wastewater treatment plant 13.1 Introduction 13.2 Full-scale smart solutions for odour control with treatment and abatement solutions 13.2.1 Smart odour treatment with biofilter system 13.2.2 Smart odour treatment with biotrickling filter system 13.2.3 Smart odour treatment with wet air scrubbing 13.2.4 Other smart technologies for odour control and treatment 13.3 Implementation of smart technologies 13.4 Conclusions and perspectives References 14 - Microbial biotechnology for wastewater treatment into circular economy 14.1 Introduction 14.2 Metagenomics 14.2.1 Taxonomical classification by 16S rDNA and ITS amplicon sequencing: metataxonomics 14.2.2 Metataxomics: pipelines of analysis and software 14.2.3 Whole-genome shotgun metagenomics (WGSM) 14.2.4 Metagenomic insights into functions and compositions of microbial communities operating in WWTPs 14.3 Metatranscriptomics 14.4 Metaproteomics 14.5 Resource recovery and energy production by microbial communities: from WWTPs to biorefineries 14.5.1 Production of relevant biopolymers by microbial communities operating in WWTPs 14.5.2 Valuable biogas in WWTPs for energy production 14.6 Conclusions and perspectives References 15 - Biological nutrient recovery from wastewater for circular economy 15.1 Introduction 15.2 Anaerobic processes for nutrients recovery 15.2.1 Anaerobic digestion 15.2.2 Anaerobic membrane bioreactor 15.2.2.1 Configurations of anaerobic membrane bioreactor 15.2.2.2 Characteristics of membranes for anaerobic membrane reactor Membrane materials Membrane configuration 15.2.3 Nutrient recovery utilizing the anaerobic process 15.2.3.1 Nutrients recovery from the dewatered sludge 15.2.3.2 Liquid fertilizer application of digestate for farmland 15.2.3.3 Nitrogen recovery by ammonia stripping-absorption 15.2.3.4 Phosphorus recovery as struvite 15.2.4 Application, potentials, and challenges 15.3 Photo-bioprocesses for nutrients recovery 15.3.1 Microalgae-based technologies 15.3.1.1 Characteristics of microalgae species used in wastewater treatment 15.3.1.2 Mechanisms of nutrient recovery by microalgae 15.3.1.3 Configuration of microalgae-based cultivation systems Suspended open systems Suspended closed photobioreactors Immobilized algae system 15.3.1.4 Factors affecting nutrients recovery using microalgae Nutrients Light pH levels 15.3.2 Photosynthetic bacteria-based technologies 15.3.2.1 Classification and metabolic patterns of photobacteria 15.3.2.2 Photosynthetic bacteria-based membrane bioreactor 15.3.2.3 Nutrient recovery and biomass production in photosynthetic bacteria cultivation 15.3.2.4 Impact factors and methods of enhancement Carbon source, nitrogen source, and carbon/nitrogen ratio Light Hydraulic retention time Sludge retention time 15.3.3 Applications, potentials, and challenges 15.4 Microbial electrochemical technologies for nutrients recovery 15.4.1 Microbial electrolysis cells for nutrients recovery 15.4.2 Microbial fuel cells for nutrients recovery 15.4.3 Applications, potentials, and challenges 15.5 Conclusions and perspectives References 16 - Stakeholder engagement: A strategy to support the transition toward circular economy business models 16.1 Introduction 16.2 From a linear to a circular model for greater sustainable development 16.3 Stakeholder engagement and management of sustainable business models 16.4 How do stakeholders and their engagement affect the transition toward circular business models? 16.5 Conclusions and perspectives References Index