دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Stefan Bosse
سری:
ISBN (شابک) : 9783746752228, 9781032111391
ناشر: ioat
سال نشر: 2022
تعداد صفحات:
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 Mb
در صورت تبدیل فایل کتاب Crowdsourcing and Simulation with Mobile Agents and the JavaScript Agent Machine به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب جمع سپاری و شبیه سازی با عوامل موبایل و ماشین عامل جاوا اسکریپت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Table of Content Introduction: Outline and Synopsis 1.1 Outline and Introduction 1.2 Data Processing in Sensor Networks with Multi-Agent Systems 1.2.1 Distributed Micro-scale Data Processing in Materials 1.2.2 Multi-Agent Systems 1.2.3 Heterogeneous Environments 1.3 The Agent Behaviour Model 1.3.1 Dynamic Activity-Transition Graphs 1.3.2 The Agent Interaction with a Tuple Space 1.4 Agent Programming Languages and AAPL 1.5 Agent Processing Platforms 1.5.1 The Non-Programmable Application-specific Agent Processing Platform PCSP 1.5.2 The Programmable Agent Processing Platform PAVM 1.5.3 JAVM: The JavaScript PAVM 1.5.4 Comparison of the Agent Processing Platforms 1.5.5 JAM: The JavaScript Agent Machine 1.6 AAPL MAS and Mobile Processes: The P-Calculus 1.7 High-Level Synthesis of Agents and Agent Platforms 1.8 High-level Synthesis of SoC Designs 1.9 Simulation Techniques and Framework 1.9.1 Behavioural Simulation 1.9.2 Platform Simulation 1.9.3 Simulation of Real-world Sensor Networks 1.9.4 RTL Simulation 1.10 Event-based Sensor Data Processing and Distribution with MAS 1.11 Self-organizing Systems and MAS 1.12 From Embedded Sensing to the Internet-of-Things and Sensor Clouds 1.13 Use-Case: Structural Monitoring with MAS 1.13.1 Machine Learning and MAS 1.13.2 Hybrid approach of MAS and Inverse Numeric Methods 1.14 Use-Case: Smart Energy Management with MAS and AI 1.15 Novelty and Summary 1.16 Structure of the Book Agent Behaviour and Programming Model 2.1 The Agent Computation and Interaction Model 2.2 Activity-Transition Graphs 2.3 Dynamic Activity-Transition Graphs (DATG) 2.4 Agent Classes 2.5 Communication and Interaction of Agents 2.6 Multi-Agent Systems and Networked Processing 2.7 The Big Thing: Domains, Networks, and Mobile Agent Processing 2.7.1 AAPL Agents in the Bigraph Model 2.7.2 Heterogeneous Sensor Networks in the Bigraph Model 2.8 Distributed Process Calculus 2.9 AAPL Programming Model and Language 2.9.1 Overview and Summary 2.9.2 Signal Classes 2.9.3 Distributed Tuple-Spaces 2.9.4 AAPL Agent Classes and Agent Instantiation 2.9.5 Agent Identification in AAPL 2.9.6 AAPL Activities, Transitions, Composition, and Subclasses 2.9.7 AAPL Data Types 2.9.8 AAPL Computational Statements 2.9.9 AAPL Control Statements 2.9.10 AAPL Communication 2.9.11 AAPL Migration 2.9.12 AAPL Reconfiguration 2.9.13 AAPL Exception Handling 2.10 AAPL Agents, Platforms, Bigraphs, and Mobile Processes 2.10.1 Networks of Agent Platforms 2.10.2 AAPL MAS and the P-Calculus 2.11 AAPL Agents and Societies 2.12 AAPL Agents and the BDI Architecture 2.12.1 The BDI Architecture 2.12.2 The AAPL-BDI Relationship 2.13 Further Reading Agent Communication 3.1 Shared Memory 3.2 Tuple Space Communication 3.2.1 The Data Model 3.2.2 The Operational Semantics 3.2.3 The Synchronization Model 3.2.4 Distributed Tuple Spaces 3.2.5 Distribution by Mobile Agents 3.2.6 Markings and Garbage Collection 3.3 Communication Signals 3.4 Comparison: Signals and Tuples 3.5 Process Communication Calculus 3.5.1 The P-Calculus and Tuple-Spaces 3.5.2 The P-Calculus and Signals 3.6 FIPA ACL 3.7 AAPL Agents and Capability-based Remote Procedure Calls 3.8 Further Reading Distributed Sensor Networks 4.1 Domains and Networks 4.2 The Sensor Node 4.3 The Sensor Network 4.3.1 Communication and Network Topologies 4.3.2 Message-passing and Routing 4.3.3 Advanced D-Routing with Backtracking 4.3.4 From Passive Messages to Active Agents 4.4 Further Reading Concurrent Communicating Sequential Processes 5.1 Parallel Data Processing 5.2 The original CSP Model 5.3 Inter-Process Communication and Synchronization 5.4 The extended CCSP Model 5.4.1 Atomic Registers 5.4.2 Atomic Statements 5.4.3 Mutex 5.4.4 Semaphore 5.4.5 Event 5.4.6 Barrier 5.4.7 Timer 5.4.8 Monitor 5.5 Signal Flow Diagrams, CSP, and Petri-Nets 5.6 CSP Programming Languages 5.7 The mRTL Programming Language 5.8 The ConPro Programming Language 5.8.1 Process Composition 5.8.2 Data Storage Objects 5.8.3 Signals and Components 5.8.4 Arrays and Structure Types 5.8.5 Exceptions and Handling 5.8.6 Functions and Procedures 5.8.7 Modules 5.8.8 The ConPro Building Blocks 5.8.9 Control and Data Processing Statements 5.9 Hardware Architecture 5.9.1 Processes 5.9.2 Modules 5.9.3 Mutex Scheduler 5.9.4 Functions 5.10 Software Architecture 5.11 Further Reading PCSP: The Reconfigurable Application-specific Agent Platform 6.1 Pipelined Processes 6.2 Agent Platform Architecture 6.2.1 Token-based Agent Processing and Petri-Nets 6.2.2 The (R)PCSP Agent Platform 6.2.3 Replication and Factoring 6.2.4 Software Platform 6.2.5 Simulation Platform 6.3 Agent Platform and Hardware Synthesis 6.4 Platform Simulation 6.5 Heterogeneous Networks 6.6 Further Reading PAVM: The Programmable Agent Platform 7.1 Stack Machines versa Register Machines 7.2 Architecture: The PAVM Agent Processing Platform 7.2.1 PAVM Overview 7.2.2 Platform Architecture 7.2.3 Token-based Agent Processing 7.2.4 Instruction Format and Coding 7.2.5 Process Scheduling and VM Assignment 7.3 Agent FORTH: The Intermediate and the Machine Language 7.3.1 Program Code Frame 7.3.2 Agent Processing 7.3.3 Agent Creation and Destruction 7.3.4 Agent Modification and Code Morphing 7.3.5 Tuple Database Space 7.3.6 Signal Processing 7.3.7 Agent Mobility 7.3.8 Examples 7.4 Synthesis and Transformation Rules 7.4.1 Agent Creation using Code Morphing 7.4.2 Agent Migration using Code Morphing 7.4.3 Code Frame Synthesis 7.5 The Boot Sections and Agent Processing 7.6 Agent Platform Simulation 7.7 Case Study: A Self-organizing System 7.1. The Algorithms 7.8 The JavaScript WEB Platform JAVM 7.8.1 Capability based RPC 7.8.2 AFS: Atomic File System Service 7.8.3 DNS: Directory and Naming Service 7.8.4 Broker Service 7.8.5 Domains as Organizational Structures and the Directory Name Service 7.8.6 The Modular Platform Architecture 7.9 Further Reading JAM: The JavaScript Agent Machine 8.1 JAM: The JavaScript Agent Machine 8.2 AgentJS: The Agent JavaScript Programming Language 8.2.1 AgentJS: The JavaScript Object and extended Code-to-Text JSON+ Representation 8.2.2 The AgentJS Sandbox Environment 8.2.3 AgentJS-AAPL Relationship 8.3 AIOS: The Agent Execution and IO Environment 8.3.1 Agent Scheduling and Check-pointing 8.3.2 Agent Roles 8.3.3 The Execution Platform and Networking 8.3.4 Agent Process Mobility and Migration 8.3.5 Security by Capability-based Authorization and a lightweight Distributed Organization System Layer 8.4 JAM Implementations 8.4.1 JAMLIB 8.4.2 JAMSH: JAM Shell 8.4.3 JAMAPP: JAM Application Program 8.4.4 JS Execution Platforms 8.4.5 JAM Connectivity 8.5 Performance Evaluation 8.5.1 Watchdog Control and Time Slicing 8.6 SEJAM: The JavaScript Agent Simulator 8.7 Heterogeneous Environments 8.8 Further Reading Self-Organizing Multi-Agent Systems 9.1 Introduction to Self-Organizing Systems 9.2 Self-organizing Distributed Feature Recognition 9.2.1 Explorer Agent Behaviour Model 9.2.2 Some Simulation Experiments of a Sensor Network 9.3 Self-organizing Event-based Sensor Data Processing and Distribution 9.3.1 Event Agent Behaviour 9.3.2 Simulation Experiments of a Sensor Network 9.3.3 Interaction of Event and Explorer Agents 9.4 Self-organizing Energy Management and Distribution 9.4.1 The Mobile Smart Energy Management Agent 9.4.2 The Immobile Sensor Node Energy Management Agent 9.5 Further Reading ML: Machine Learning and Agents 10.1 Introduction to Machine Learning 10.2 Decision Trees 10.3 Artificial Neuronal Networks 10.4 Learning with Agents 10.5 Distributed Learning 10.5.1 Event-based Sensor Processing 10.5.2 Distributed Learning Algorithm DINN 10.5.3 Distributed Learning with MAS 10.5.4 Distributed Learning: Case Study 10.6 Incremental Learning 10.6.1 Incremental Learning Algorithm I2NN 10.6.2 Distributed Incremental Learning Algorithm DI2NN 10.6.3 Distributed Incremental Learning MAS 10.6.4 Distributed Incremental Learning: Case Study 10.7 Further Reading Simulation 11.1 The SeSAm Agent Simulator 11.2 Behavioural AAPL MAS Simulation 11.3 Simulation of Real-world Sensor Networks 11.4 PCSP Platform Simulation 11.4.1 The Simulation Model 11.4.2 Performance Analysis with an Use-case 11.5 The SEM Simulation Programming Language 11.5.1 SEM Classes Model 11.5.2 SEM Definitions, Expressions, Values, and Types 11.5.3 SEM Paths 11.5.4 SEM Lists, Iterators, Arrays 11.5.5 SEM Sequential Composition, Branches, and Loops 11.5.6 SEM Shapes 11.5.7 SEM Example 11.6 SEJAM: Simulation Environment for JAM 11.7 Multi-Domain Simulation with SEJAM2P 11.8 Further Reading Synthesis 12.1 The Big Picture: All together 12.2 SynDK: The Synthesis Development Toolkit 12.2.1 The Graph Database centric Synthesis Approach 12.2.2 Virtual Database Organization 12.2.3 The VDB Software Architecture 12.2.4 Structure Type Definition Schemas 12.2.5 Tagged Values 12.2.6 Programming of Compilers and LaCo: The Language Compiler 12.2.7 Abstract Syntax and VDB Graphs 12.2.8 VPL: VDB Programming Interface and Interpreter 12.2.9 Compiling a Compiler 12.2.10 Conditional and Parametric Compiling 12.3 Agent and Agent Platform Synthesis 12.3.1 Non-programmable Agent Platform Synthesis 12.3.2 Programmable Agent Platform Synthesis 12.4 The Agent Simulation Compiler SEMC 12.5 ConPro SoC High-level Synthesis 12.5.1 Synthesis Flow 12.5.2 Microcode Intermediate Representation 12.5.3 Synthesis Rules 12.5.4 Reference Stack (RS) Optimizer and Scheduler 12.5.5 Basic Block Scheduling and Data Path Parallelization 12.5.6 RTL Synthesis and VHDL Model 12.5.7 Dining Philosopher Example 12.5.8 Complex ConPro SoC Design Case Study 12.6 Further Reading Energy Management 13.1 Power Analysis and Algorithmic Selection 13.1.1 Low-power Agent Processing 13.2 Smart Energy Management with Artificial Intelligence 13.2.1 Introduction 13.2.2 Communication, Data and Energy Transport 13.2.3 Multi-Agent Interaction Model and Implementation 13.2.4 Analysis and Experimental Results of the SEM 13.2.5 Algorithmic Selection and SEM 13.3 Further Reading Use-Cases Environmental Perception, Load Monitoring, and Manufacturing 14.1 Sensorial Material I: A Flat Perceptive Sheet and Machine Learning 14.1.1 Machine Learning and Multi-Agent Systems 14.1.2 Experimental Results using Machine Based Learning with Metal Plate 14.1.3 Experimental Results using Machine Based Learning with a Rubber Plate 14.2 Sensorial Material II: A Flat Perceptive Plate and Inverse Numeric 14.3 Sensorial Material III: A Perceptive Modular Robot Arm 14.4 Sensorial Material IV: A Perceptive Robotic Gripper 14.5 Sensor Clouds: Adaptive Cloud-based Design and Manufacturing 14.6 Sensor Networks: Distributed Earthquake Monitoring 14.7 Crowd Sensing 14.8 Further Reading Material-Integrated Sensing Systems 15.1 The Sensorial Material 15.2 Integration Levels 15.2.1 Intrinsic Sensing Materials 15.2.2 Volume Integration of Sensing 15.2.3 Surface Integration of Sensing 15.2.4 Surface Application of Sensing 15.3 Integration Technologies and Sensorial Materials 15.3.1 Monolithic Integration 15.4 Digital Logic Technologies 15.4.1 Register-Transfer Architecture 15.4.2 Semi- and Full-custom CMOS/Si-based ASIC Technologies 15.4.3 Rapid Prototyping with FPGA Technologies 15.4.4 Printed and Organic Digital Circuits 15.5 Computational Constraints 15.6 Further Reading Abbreviations, Notations, Symbols A.1 Abbreviations A.2 Symbols A.3 Notation A.3.1 AAPL Short Notation A.3.2 Rules Publications and References R.1 Publications R.2 Lectures R.3 Supervised Thesises R.4 Bibliography Index