دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Wolfgang Weimer-Jehle
سری: Contributions to Management Science
ISBN (شابک) : 3031272293, 9783031272295
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 286
[287]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Cross-Impact Balances (CIB) for Scenario Analysis: Fundamentals and Implementation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ترازهای تأثیر متقابل (CIB) برای تحلیل سناریو: مبانی و پیاده سازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ترازهای تأثیر متقابل (CIB) روشی است که اغلب برای تحقیقات، در شرکت ها و ادارات برای ساخت سیستماتیک سناریوهای کیفی استفاده می شود. این کتاب اصول این روش را معرفی می کند و از یک مثال گام به گام واضح برای توضیح چگونگی ساخت سناریوها با CIB استفاده می کند. مشکلات احتمالی در به کارگیری روش را شرح می دهد و برای موارد استفاده مختلف کمک می کند. این شامل یک بحث مفصل درباره تصمیمات طراحی است که یک برنامه CIB را شکل می دهد و روش هایی که می توان برای جمع آوری داده های لازم استفاده کرد. نمونه های کاربردی ارائه شده اولین برداشت از امکانات روش را ارائه می دهند. بحث در مورد نقاط قوت و محدودیتهای روش، راهنماییهایی را در مورد موارد استفاده ارائه میدهد که در آن CIB میتواند سودآور به کار رود. این کتاب برای محققان و دست اندرکاران حوزه تحلیل سناریو ارزشمند است.
Cross-Impact Balances (CIB) is a method frequently used for research, in companies and in administrations for the systematic construction of qualitative scenarios. This book introduces the fundamentals of the method and uses a clear step-by-step example to explain how scenarios can be constructed with CIB. It describes possible problems in applying the method and offers help for various use cases. It includes a detailed discussion of the design decisions that shape a CIB application and the methods that can be used to collect the necessary data. The application examples presented provide a first impression of the possibilities of the method. A discussion of the strengths and limitations of the method offers guidance on the use cases in which CIB can be profitably applied. The book is valuable for researchers and practitioners in the field of scenario analysis.
Acknowledgments Contents Abbreviations List of Figures List of Tables Chapter 1: Introduction to CIB References Chapter 2: The Application Field of CIB 2.1 Scenarios 2.2 Scenarios and Decisions 2.3 Classifying CIB References Chapter 3: Foundations of CIB 3.1 Descriptors 3.2 Descriptor Variants 3.2.1 Completeness and Mutual Exclusivity of the Descriptor Variants 3.2.2 The Scenario Space 3.2.3 The Need for Considering Interdependence 3.3 Coping with Interdependence: The Cross-Impact Matrix 3.4 Constructing Consistent Scenarios 3.4.1 The Impact Diagram 3.4.2 Discovering Scenario Inconsistencies Using Influence Diagrams 3.4.3 Formalizing Consistency Checks: The Impact Sum 3.4.4 The Formalized Consistency Check at Work 3.4.5 From Arrows to Rows and Columns: The Matrix-Based Consistency Check 3.4.6 Scenario Construction 3.5 How to Present CIB Scenarios 3.6 Key Indicators of CIB Scenarios 3.6.1 The Consistency Value Descriptor Consistency Values Scenario Consistency Values Nonconsideration of Autonomous Descriptors Inconsistency Scale Global Inconsistency 3.6.2 The Consistency Profile Consistency Profile and Scenario Stability Consistency Profile and Judgment Uncertainty 3.6.3 The Total Impact Score 3.7 Data Uncertainty 3.7.1 Estimating Data Uncertainty 3.7.2 Data Uncertainty and the Robustness of Conclusions 3.7.3 Other Sources of Uncertainty References Chapter 4: Analyzing Scenario Portfolios 4.1 Structuring a Scenario Portfolio 4.1.1 Perspective A: If-Then 4.1.2 Perspective B: Order by Performance 4.1.3 Perspective C: Portfolio Mapping Scenario Axes Using Scenario Axes Diagrams in CIB Analysis Special form of the Scenario Axes Diagram: Probability vs. Effect 4.2 Revealing the Whys and Hows of a Scenario 4.2.1 How to Proceed 4.2.2 The Scenario-Specific Cross-Impact Matrix 4.3 Ex Post Consistency Assessment of Scenarios 4.3.1 Intuitive Scenarios 4.3.2 Reconstructing the Descriptor Field 4.3.3 Preparing the Cross-Impact Matrix 4.3.4 CIB Evaluation 4.4 Intervention Analysis 4.4.1 Analysis Example: Interventions to Improve Water Supply 4.4.2 The Cross-Impact Matrix and its Portfolio 4.4.3 Conducting an Intervention Analysis Compilation of the Intervention Options Testing a Proposed Intervention: E1 Testing a Proposed Intervention: A2 Robustness Check Side Effect Control Alternative Forms of Intervention Analysis 4.4.4 Surprise-Driven Scenarios 4.5 Expert Dissent Analysis 4.5.1 Classifying Dissent 4.5.2 Rule-Based Decisions 4.5.3 The Sum Matrix Consensus and Dissent in the Matrix Ensemble Evaluation of the Sum Matrix Significance of Inconsistencies in Sum Matrices Sum Matrix Construction in the Case of Nonuniform Rating Scales Sum Matrix vs. Mean Value Matrix Summary: Interpreting the Sum Matrix 4.5.4 Delphi 4.5.5 Ensemble Evaluation Step 1: Individual Evaluation of the Expert Matrices Step 2: Compiling the Ensemble Table Step 3: Analyzing the Ensemble Table Sensitivity Analysis 4.5.6 Group Evaluation Step 1: Identification of the Key Dissent Step 2: Grouping the Matrices Along the Key Dissent Step 3: Group Sum Matrix Building and Evaluation Comparing the Results of the Group Evaluation and the Ensemble Evaluation 4.6 Storyline Development 4.6.1 Strengths and Weaknesses of CIB-Based Storyline Development 4.6.2 Preparation of the Scenario-Specific Cross-Impact Matrix 4.6.3 Storyline Creation 4.7 Basic Characteristics of a CIB Portfolio 4.7.1 Number of Scenarios Scenario Counts in Practice Sparse Matrices: A Prerequisite for Large Scenario Portfolios Frequency Distribution of the Inconsistency Value 4.7.2 The Presence Rate 4.7.3 The Portfolio Diversity The Distance Table Measuring Portfolio Diversity Typical Diversity Scores References Chapter 5: What if Challenges in CIB Practice 5.1 Insufficient Number of Scenarios 5.2 Too Many Scenarios 5.2.1 Statistical Analysis Interpreting the Frequency Data Requirements for a Probabilistic Interpretation of Frequency Data 5.2.2 Diversity Sampling 5.2.3 Positioning Scenarios on a Portfolio Map Method Comparison 5.2.4 Further Procedures Cluster Analysis Correspondence Analysis 5.3 Monotonous Portfolio 5.3.1 Unbalanced Judgment Sections 5.3.2 Unbalanced Columns 5.4 Bipolar Portfolio 5.4.1 Causes of Bipolar Portfolios 5.4.2 Special Approaches for Analyzing Bipolar Portfolios Single Intervention Dual Interventions 5.5 Underdetermined Descriptors 5.6 Essential Vacancies 5.6.1 Resolving Vacancies by Expanding the Portfolio 5.6.2 Cause Analysis 5.7 Context-Dependent Impacts References Chapter 6: Data in CIB 6.1 About Descriptors 6.1.1 Explanation of Term 6.1.2 Descriptor Types Formal Typology: Classification by Interdependence Type Content-Oriented Typology: Classification by Roles in Terms of Content 6.1.3 Methodological Aspects Completeness of the Descriptor Field Number of Descriptors Aggregation Level Documentation 6.2 About Descriptor Variants 6.2.1 Explanation of Term 6.2.2 Types of Descriptor Variants State Descriptors Versus Trend Descriptors Descriptor Variants: Scales of Measurement Descriptor Variant Classification According to Occurrence in the Portfolio 6.2.3 Methodological Aspects Definition Completeness Mutual Exclusivity Absence of Overlap 6.2.4 Designing the Descriptor Variants Gradation of the Descriptor Variants Range of the Descriptor Variants: Conservative Scenarios vs. Extreme Scenarios Plausibility of Descriptor Variants 6.3 About Cross-impacts 6.3.1 Explanation of Term 6.3.2 Methodological Aspects Rating Interval Empty Judgment Sections and the Omission of Very Weak Influences Ensuring Coding Quality: Avoid Coding Indirect Influences What Are Indirect Influences? Why Is It a Problem to Code Indirect Influences in the Matrix Together with Direct Influences? Implementation Hints Ensuring Coding Quality: Avoiding Inverse Coding Ensuring Coding Quality: Balancing Positive and Negative Cross-impacts Comparability as a Criterion for the Coding Style Conventions to Ensure Comparability of Cross-impact Ratings ``Standardization´´ as a Strict but also Restrictive Instrument to Balance Positive and Negative Cross-impacts Ensuring Coding Quality: Calibrating Strength Ratings Ensuring Coding Quality: Sign Errors and Double Negations Ensuring Coding Quality: Predetermined Descriptors Phantom Variants as a Cause of Bias Ensuring Coding Quality: Absolute Cross-impacts Avoiding Conflicts Between Absolute Cross-impacts 6.3.3 Data Uncertainty 6.4 About Data Elicitation 6.4.1 Self-Elicitation Examples 6.4.2 Literature Review Descriptor Screening Descriptor Variants Cross-impact Data Coding Literature Quotations: An Example from Practice Assessment Examples 6.4.3 Expert Elicitation (Written/Online) Descriptor Screening Descriptor Ranking Descriptor Variants Cross-impact Data Partitioning the Matrix for Expert Elicitation Assessment Examples 6.4.4 Expert Elicitation (Interviews) Descriptor/Variant Screening Cross-impact Data Assessment Examples 6.4.5 Expert Elicitation (Workshops) Descriptor Screening Descriptor Ranking Cross-impact Data Assessment Number of Participants Time Management General Recommendations Pretest Combining Elicitation Methods Iteration and Scenario Validation Examples 6.4.6 Use of Theories or Previous Research as Data Collection Sources Assessment Examples References Chapter 7: CIB at Work 7.1 Iran Nuclear Deal 7.2 Energy and Society 7.3 Public Health 7.4 IPCC Storylines References Chapter 8: Reflections on CIB 8.1 Interpretations 8.1.1 Interpretation I (Time-Related): CIB in Scenario Analysis 8.1.2 Interpretation II (Unrelated to Time): CIB in Steady-State Systems Analysis 8.1.3 Interpretation III: CIB in Policy Design 8.1.4 Classification of CIB as a Qualitative-Semiquantitative Method of Analysis 8.2 Strengths of CIB 8.2.1 Scenario Quality 8.2.2 Traceability of the Scenario Consistency 8.2.3 Reproducibility and Revisability 8.2.4 Complete Screening of the Scenario Space 8.2.5 Causal Models 8.2.6 Knowledge Integration and Inter- and Transdisciplinary Learning 8.2.7 Objectivity 8.2.8 Scenario Criticism 8.3 Challenges and Limitations 8.3.1 Time Resources 8.3.2 Aggregation Level and Limited Descriptor Number 8.3.3 System Boundary 8.3.4 Limits to the Completeness of Future Exploration 8.3.5 Discrete-Valued Descriptors and Scenarios 8.3.6 Trend Stability Assumption 8.3.7 Uncertainty and Residual Subjectivity in Data Elicitation 8.3.8 Context-Sensitive Influences 8.3.9 Consistency as a Principle of Scenario Design 8.3.10 Critical Role of Methods Expertise 8.3.11 CIB Does Not Study Reality but Mental Models of Reality 8.4 Unsuitable Use Cases: A Checklist 8.5 Alternative Methods References Appendix: Analogies Physics Network Analysis Game Theory Glossary Cross-impact matrix (in the context of CIB) Portfolio (in CIB) Scenarios (in the context of CIB) Index