دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Kamel A. Abd-Elsalam, Ki-Taek Lim سری: Nanobiotechnology for Plant Protection ISBN (شابک) : 0128219106, 9780128219102 ناشر: Elsevier سال نشر: 2021 تعداد صفحات: 840 [821] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 28 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب CRISPR and RNAi Systems: Nanobiotechnology Approaches to Plant Breeding and Protection به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستمهای CRISPR و RNAi: رویکردهای نانوبیوتکنولوژی برای اصلاح و حفاظت گیاهان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
گیاهان در برابر پاتوژنها از جمله قارچها، باکتریها و ویروسها آسیبپذیر هستند که باعث مشکلات و کمبودهای حیاتی میشوند. حفاظت از محصولات با اصلاح نباتات راه حل امیدوار کننده ای را ارائه می دهد که هیچ تأثیر آشکاری بر سلامت انسان یا اکوسیستم محلی ندارد. اصلاح محصولات زراعی قدرتمندترین رویکرد برای تولید ارقام منحصر به فرد محصول از زمان بومی سازی بوده است که نوآوری های اصلی را در تغذیه جهان و توسعه جامعه ممکن می سازد. ویرایش ژنوم یکی از دستگاههای ژنتیکی است که میتوان پیادهسازی کرد و مقاومت در برابر بیماری اغلب به عنوان تشویقکنندهترین کاربرد فناوری CRISPR/Cas9 در کشاورزی ذکر میشود. نانوبیوتکنولوژی از قدرت ویرایش ژنوم برای توسعه محصولات کشاورزی استفاده کرده است. رویکردهای نانوتکنولوژی DNA یا RNA در اندازه نانو میتوانند به افزایش پایداری و عملکرد RNAهای راهنمای CRISPR کمک کنند. این کتاب آخرین تحقیقات در این زمینهها را گرد هم میآورد.
سیستمهای CRISPR و RNAi: رویکردهای نانوبیوتکنولوژی برای اصلاح و حفاظت گیاهان درکی کامل از تکنیکهای RNAi و CRISPR/Cas9 برای کنترل مایکوتوکسینها، مبارزه با نماتدهای گیاهی و شناسایی پاتوژنهای گیاهی. ویرایش ژنوم CRISPR/Cas اصلاح هدفمند کارآمد را در اکثر محصولات ممکن میسازد، بنابراین نویدبخش تسریع بهبود محصول است. CRISPR/Cas9 را می توان برای مدیریت حشرات گیاهی و پاتوژن های مختلف گیاهی استفاده کرد. این کتاب یک منبع مرجع مهم هم برای دانشمندان علوم گیاهی و هم برای دانشمندان محیطزیست است که میخواهند بفهمند چگونه از روشهای مبتنی بر بیوتکنولوژی نانو برای ایجاد سیستمهای حفاظت از گیاه و اصلاح نباتات کارآمدتر استفاده میشود.
Plants are vulnerable to pathogens including fungi, bacteria, and viruses, which cause critical problems and deficits. Crop protection by plant breeding delivers a promising solution with no obvious effect on human health or the local ecosystem. Crop improvement has been the most powerful approach for producing unique crop cultivars since domestication occurred, making possible the main innovations in feeding the globe and community development. Genome editing is one of the genetic devices that can be implemented, and disease resistance is frequently cited as the most encouraging application of CRISPR/Cas9 technology in agriculture. Nanobiotechnology has harnessed the power of genome editing to develop agricultural crops. Nanosized DNA or RNA nanotechnology approaches could contribute to raising the stability and performance of CRISPR guide RNAs. This book brings together the latest research in these areas.
CRISPR and RNAi Systems: Nanobiotechnology Approaches to Plant Breeding and Protection presents a complete understanding of the RNAi and CRISPR/Cas9 techniques for controlling mycotoxins, fighting plant nematodes, and detecting plant pathogens. CRISPR/Cas genome editing enables efficient targeted modification in most crops, thus promising to accelerate crop improvement. CRISPR/Cas9 can be used for management of plant insects, and various plant pathogens. The book is an important reference source for both plant scientists and environmental scientists who want to understand how nano biotechnologically based approaches are being used to create more efficient plant protection and plant breeding systems.
Title-page_2021_CRISPR-and-RNAi-Systems CRISPR and RNAi Systems Copyright_2021_CRISPR-and-RNAi-Systems Copyright Contents_2021_CRISPR-and-RNAi-Systems Contents List-of-contributors_2021_CRISPR-and-RNAi-Systems List of contributors Series-preface_2021_CRISPR-and-RNAi-Systems Series preface Preface_2021_CRISPR-and-RNAi-Systems Preface Chapter-1---Can-CRISPRized-crops-save-the-global-fo_2021_CRISPR-and-RNAi-Sys 1 Can CRISPRized crops save the global food supply? 1.1 Introduction 1.2 Gene editing techniques 1.3 RNAi and CRISPR systems for plant breeding and protection: where are we now? 1.3.1 Improving yield and quality in crops 1.3.2 Biotic and abiotic stress resistance 1.3.3 Speed breeding programs in plants 1.4 What are future perspectives? 1.5 Conclusion References Chapter-2---Targeted-genome-engineering-for-insects_2021_CRISPR-and-RNAi-Sys 2 Targeted genome engineering for insects control 2.1 Introduction 2.1.1 RNAi in insects 2.1.2 Prerequisites for RNAi response 2.1.3 Variation in RNAi response 2.1.4 ORDER specific RNAi applications 2.1.5 Pros and cons of RNAi-mediated insect control strategies 2.2 CRISPR/Cas9 2.2.1 CRISPR–Cas9 sex-ratio distortion and sterile insect technique 2.2.2 Potential targets for CRISPR system in insects 2.3 Conclusion and future prospects References Chapter-3---CRISPR-Cas9-regulations-in-plant-scie_2021_CRISPR-and-RNAi-Syste 3 CRISPR/Cas9 regulations in plant science 3.1 Introduction 3.2 Ethical concerns for CRISPR-based editing system 3.3 Biosafety concerns for genomic manipulated crops 3.4 Global regulations of CRISPR edit crops 3.4.1 The United States regulation policies for genome edit crops 3.4.2 Canada regulation policies for genome edit crops 3.4.3 European Union regulation policies for genome edit crops 3.4.4 China regulation policies for genome edit crops 3.4.5 Pakistan regulation policies for genome edit crops 3.4.6 India regulation policies for genome edit crops 3.4.7 Australia regulation policies for genome edit crops 3.4.8 Japan regulation policies for genome edit crops 3.4.9 New Zealand regulation policies for genome edit crops 3.4.10 Brazil regulation policies for genome edit crops 3.5 Conclusion and future outlook 3.6 Conflict of interest References Chapter-4---Are-CRISPR-Cas9-and-RNA-interference-based-ne_2021_CRISPR-and-RN 4 Are CRISPR/Cas9 and RNA interference-based new technologies to relocate crop pesticides? 4.1 Introduction 4.2 Conventional pesticides: present status and challenges 4.3 Advancement in green revolution: the RNAi toolkit 4.4 Advantages and disadvantages of RNAi-based methods 4.5 Advantages of CRISPR/Cas9-based systems 4.6 Conclusions and future prospects Acknowledgments References Further reading Chapter-5---CRISPR-Cas-epigenome-editing--improving-cro_2021_CRISPR-and-RNAi 5 CRISPR-Cas epigenome editing: improving crop resistance to pathogens 5.1 Introduction 5.1.1 A brief history of CRISPR/Cas 5.1.2 CRISPR/Cas9-based genome editing 5.2 Applications of CRISPR/Cas9 5.2.1 Re-engineering Cas9 for genome editing 5.2.1.1 Double nicking CRISPR/Cas9 5.2.1.2 CRISPRi (CRISPR interference) 5.2.1.3 CRISPRa (CRISPR activation) 5.2.1.4 CRISPR I/O (input/output) gene regulation 5.2.1.5 CRISPR epigenome editing 5.2.1.6 CRISPR base editing 5.2.1.7 CRISPR prime editing 5.3 CRISPR/Cas12 5.4 CRISPR/Cas13 RNA editing 5.5 CRISPR/Cas14 5.6 Delivery of CRISPR/Cas system for (epi)genome editing 5.6.1 Virus-induced gene editing and viral delivery for CRISPR/Cas systems 5.6.2 Agrobacterium-mediated T-DNA transformation 5.6.3 PEG transformation 5.6.4 Direct delivery of ribonucleotide protein complexes 5.7 Cisgenic, intragenic, transgenic or edited plants 5.8 Epigenome editing 5.8.1 Targeted epigenetic regulation 5.8.2 Crop disease resistance 5.8.3 Limitations to epigenome editing 5.9 Summary and future directions Acknowledgments References Chapter-6---CRISPR-Cas-system-for-the-development-of-dise_2021_CRISPR-and-RN 6 CRISPR/Cas system for the development of disease resistance in horticulture crops 6.1 Introduction 6.2 Bacterial resistance 6.2.1 Citrus canker 6.2.2 Fire blight 6.3 Fungal resistance 6.3.1 Powdery mildew 6.3.2 Gray mold 6.3.3 Black pod 6.4 Virus resistance 6.4.1 RNA viruses 6.4.2 DNA viruses 6.5 Concluding remarks References Chapter-7---CRISPR-and-RNAi-technology-for-crop-improvem_2021_CRISPR-and-RNA 7 CRISPR and RNAi technology for crop improvements in the developing countries 7.1 Introduction 7.2 Conventional breeding for crop improvements 7.3 RNAi technology: an overview 7.3.1 RNAi technology for crop improvements 7.3.1.1 Enhancement in biotic stress tolerance/resistance 7.3.1.2 Enhancement in abiotic stress tolerance/resistance 7.3.1.3 Engineering of seedless fruits 7.3.1.4 Enhancement of nutritional value 7.3.1.5 Induction of male sterility/heterosis 7.4 CRISPR technology for crop improvements: an overview 7.4.1 CRISPR technology for the development of biotic stress resistance 7.4.2 CRISPR technology for the development of abiotic stress resistance 7.4.3 CRISPR technology for nutritional modifications in crop 7.5 Crop improvements: examples from developing countries 7.5.1 China 7.5.2 India 7.5.3 Pakistan 7.5.4 Bangladesh 7.5.5 Africa 7.6 Conclusion and prospects References Chapter-8---RNA-interference-and-CRISPR-Cas9-applicatio_2021_CRISPR-and-RNAi 8 RNA interference and CRISPR/Cas9 applications for virus resistance 8.1 Introduction 8.2 Control of viral diseases using RNA interference approaches 8.3 Control of viral diseases using CRISPR/Cas technology 8.4 CRISPR/Cas genome editing against DNA viruses 8.5 CRISPR/Cas genome editing against RNA viruses 8.6 Production of foreign DNA-free virus-resistant plants by CRISPR/Cas 8.7 RNA interference versus CRISPR/Cas strategies 8.8 Conclusion References Chapter-9---Current-trends-and-recent-progress-of-genetic-e_2021_CRISPR-and- 9 Current trends and recent progress of genetic engineering in genus Phytophthora using CRISPR systems 9.1 Introduction 9.2 Common diseases of crops caused by Phytophthora 9.3 Genome editing approaches 9.4 CRISPR-Cas systems for Phytophthora 9.5 Applications of CRISPR-Cas in genetic engineering of Phytophthora 9.6 Challenges of CRISPR-Cas in Phytophthora 9.7 CRISPR-Cas based databases and bioinformatics tools for Phytophthora 9.8 Conclusion and future prospects Acknowledgment References Chapter-10---CRISPR-Cas9-and-Cas13a-systems--a-promising-_2021_CRISPR-and-RN 10 CRISPR/Cas9 and Cas13a systems: a promising tool for plant breeding and plant defence 10.1 Introduction 10.2 CRISPR/Cas technology and engineering plant resistance to viruses 10.3 Targeting plant DNA viruses using CRISPR/Cas9 10.4 Targeting RNA viruses using CRISPR/Cas13 and FnCas9 10.4.1 Direct interference of viral RNA genomes 10.4.2 Interference of plant host factors aiding viral infection 10.4.3 Advantages of genome editing technologies for breeding virus resistance 10.4.4 Caveats of employing the CRISPR/Cas technology to engineer resistance to plant viruses 10.4.4.1 Overcoming the caveats of the CRISPR/Cas systems 10.4.5 Future directions of genome editing to protect crops from viruses 10.5 CRISPR technology for plant improvement 10.5.1 Rice 10.5.2 Wheat 10.5.3 Cotton 10.5.4 Maize 10.5.5 Soya bean 10.5.6 Tomato 10.5.7 Potato 10.5.8 Citrus 10.5.9 Apples 10.6 Conclusion References Chapter-11---CRISPR-Cas-techniques--a-new-method-for-RN_2021_CRISPR-and-RNAi 11 CRISPR/Cas techniques: a new method for RNA interference in cereals 11.1 Introduction 11.2 Overview of CRISPR/Cas system 11.3 CRISPR system for genome editing in cereals 11.3.1 CRISPR/Cas system for rice improvement 11.3.2 CRISPR/Cas system for wheat improvement 11.3.3 CRISPR/Cas system for maize improvement 11.3.4 CRISPR/Cas system for sorghum improvement 11.4 CRISPR/Cas system a better choice for genome editing 11.5 Recent developments in CRISPR technology 11.6 Conclusion and future prospectus References Chapter-12---Genetic-transformation-methods-and-advanceme_2021_CRISPR-and-RN 12 Genetic transformation methods and advancement of CRISPR/Cas9 technology in wheat 12.1 Introduction 12.2 Objective 12.3 Background 12.3.1 Structure and mechanism of Cas9 12.3.2 Types of CRISPR/Cas and opportunity headed for genome editing 12.4 Steps involved in CRISPR/Cas9 mediated genome editing 12.5 Different technologies evolved from CRISPR 12.5.1 Gene and epigenome editing in wheat 12.5.2 Transcriptional activation and suppression using dCas9 12.5.3 Site-directed foreign DNA insertion in the wheat genome 12.5.4 Multiplexed engineering in wheat 12.5.4.1 Multiple gRNAs with their respective promoters 12.5.4.2 Multiple gRNAs using tRNA processing enzymes 12.5.4.3 Multiple gRNAs using Csy4 12.5.5 Viral replicon based editing in wheat 12.6 The delivery methods of CRISPR/Cas9 construct in wheat 12.6.1 Biolistic mediated delivery of CRISPR/Cas9 in the wheat 12.6.2 Agrobacterium-mediated transformation in wheat 12.6.3 Floral dip/microspore-based gene editing in wheat 12.6.4 PEG-mediated delivery of CRISPR/Cas9 reagents or vector 12.7 Genome engineering for wheat improvement 12.7.1 Improvement for grain quality and stress-tolerant wheat 12.7.2 CRISPR/Cas9 mediated fungal resistant wheat 12.8 Conclusion and outlook Acknowledgments References Chapter-13---Application-of-CRISPR-Cas-system-for-geno_2021_CRISPR-and-RNAi- 13 Application of CRISPR/Cas system for genome editing in cotton 13.1 Introduction 13.2 Genome editing technologies 13.3 CRISPR/Cas genome editing system 13.4 Application of CRISPR/Cas9 for genome editing in cotton 13.4.1 Utilization of CRISPR for biotic stresses 13.4.2 Utilization of CRISPR for abiotic stresses 13.4.3 Utilization of CRISPR for fiber quality 13.4.4 Utilization of CRISPR for plant architecture and flowering 13.4.5 Utilization of CRISPR for virus-induced disease resistance 13.4.6 Utilization of CRISPR for epigenetic modifications 13.4.7 Utilization of CRISPR for multiplexed gene stacking 13.4.8 Challenges in the utilization of CRISPR for polyploidy cotton 13.5 Conclusion Acknowledgement References Chapter-14---Resistant-starch--biosynthesis--regulatory-p_2021_CRISPR-and-RN 14 Resistant starch: biosynthesis, regulatory pathways, and engineering via CRISPR system 14.1 Introduction 14.2 Wheat starch: overview 14.2.1 Starch biosynthesis in crops 14.2.2 Role of bZIP in seed development and maturation 14.3 Role of CRISPR/Cas9 in developing resistant starch 14.4 Recent advancement in CRISPR/Cas for the crop improvement 14.5 Genome modification for nutrition improvement 14.6 Conclusion References Chapter-15---Role-of-CRISPR-Cas-system-in-altering-phenolic_2021_CRISPR-and- 15 Role of CRISPR/Cas system in altering phenolic and carotenoid biosynthesis in plants defense activation 15.1 Introduction 15.2 Phenolics in plant defense 15.3 Biosynthesis and regulation 15.4 Carotenoids 15.5 Genome editing 15.6 CRISPR/Cas9 and applications in alteration in the biosynthesis of phenolics and carotenoids 15.7 Future of genome editing in field crops 15.8 Conclusion References Chapter-16---Fungal-genome-editing-using-CRISPR-Cas-nuclea_2021_CRISPR-and-R 16 Fungal genome editing using CRISPR-Cas nucleases: a new tool for the management of plant diseases 16.1 Introduction 16.2 Common diseases of crops caused by phytopathogenic fungi 16.3 Approaches for genetic engineering of filamentous fungi 16.3.1 Transcription activator-like effector nucleases 16.3.2 Zinc finger nucleases 16.3.3 CRISPR-Cas nucleases 16.3.4 Variants of CRISPR-Cas system 16.3.4.1 Cpf1/Cas12a 16.3.4.2 Cas13a 16.3.4.3 Cas9 nickase 16.3.4.4 dCas9 16.4 Editing in plant genes using CRISPR-Cas against phytopathogenic fungi 16.5 Applications of CRISPR-Cas in genetic engineering of phytopathogenic fungi 16.6 Conclusion and perspective Acknowledgment References Chapter-17---CRISPR-Cas-systems-as-antimicrobial-agents_2021_CRISPR-and-RNAi 17 CRISPR–Cas systems as antimicrobial agents for agri-food pathogens 17.1 Introduction 17.2 Role of CRISPR/Cas system in bacterial immunity 17.2.1 Structure of clustered regularly interspaced short palindromic repeat in bacteria 17.2.2 Arrangement of CRISPR/Cas type system 17.2.3 Functioning mechanism of CRISPR and Cas proteins and their proposed role 17.3 The CRISPR/Cas-9 system and its utilization in genome editing 17.4 CRISPR–Cas systems application in food, agri-food, and plant 17.4.1 The benefit of CRISPR/Cas systems in starter culture preparation 17.4.2 Development of CRISPR/Cas-9 against virus resistance in agriculturally crops 17.4.3 Development of CRISPR/Cas-9 against fungal resistance in agriculturally crops 17.4.4 Development of CRISPR/Cas-9 against bacterial resistance in agriculturally crops 17.4.5 Development of CRISPR/Cas-9 against bacterial resistance in food 17.5 The advantages and limits of CRISPR–Cas systems in agri-food 17.6 Conclusion and future perspective References Chapter-18---CRISPR-interference-system--a-potential-strate_2021_CRISPR-and- 18 CRISPR interference system: a potential strategy to inhibit pathogenic biofilm in the agri-food sector 18.1 Introduction 18.2 Pathogenic biofilms of agriculture 18.2.1 Plant biofilm diseases 18.2.2 Phytopathogenic bacteria 18.2.3 Phytopathogenic oomycetes 18.2.4 Phytopathogenic fungi 18.3 Food industry biofilms 18.3.1 Food industry biofilm-forming pathogens 18.4 Agri-food biofilm specific genes 18.5 CRISPR applications 18.6 CRISPR mechanism of action 18.6.1 CRISPR–Cas and agri-food pathogenic biofilms 18.6.2 Initial adherence and colonization prevention 18.6.3 Quorum sensing inhibition 18.6.4 Phage-based antibiofilm agent development 18.7 Conclusion References Chapter-19---Patenting-dynamics-in-CRISPR-gene-editin_2021_CRISPR-and-RNAi-S 19 Patenting dynamics in CRISPR gene editing technologies 19.1 Backdrop 19.2 The patenting landscape 19.2.1 The US patents scenario vis-à-vis Broad Institute and University of California Berkeley with regard to the foundatio... 19.2.2 The CRISPR research and patent landscape—a follow-on of the foundational patents 19.2.2.1 General observations 19.2.2.2 CRISPR landscape updated to February 2020 19.3 CRISPR patent interference proceedings, opposition proceedings, and patent litigations 19.3.1 Patent interference proceedings at the USPTO 19.3.2 Interference proceedings in the USA of Broad’s patent no. US8697359B1 19.3.3 Interference proceedings in the USA of University of California Berkeley’s patent US 10,000,772 B2 initiated by Sigma 19.3.4 The EPO patent dispute scenario involving Broad Institute and University of California with regard to the foundation... 19.3.4.1 Opposition proceedings against Broad Institute, MIT and Harvard patent no. EP 2771468 B1 (EPO, 2020) 19.3.4.2 Opposition proceedings against University of California Berkeley together with the University of Vienna and Emmanu... 19.4 Licensing and patent transactions related to CRISPR technologies 19.5 Ethical challenges and regulatory issues 19.6 Conclusion Acknowledgement References Chapter-20---Tricks-and-trends-in-CRISPR-Cas9-based-genome-e_2021_CRISPR-and 20 Tricks and trends in CRISPR/Cas9-based genome editing and use of bioinformatics tools for improving on-target efficiency 20.1 Bacterial CRISPR/Cas-mediated adaptive immune system 20.2 Important considerations before starting CRISPR/Cas experiments 20.3 General criteria for selecting a candidate target sequence 20.4 Current rules and considerations for an efficient gRNA design 20.5 Machine learning approach for defining on-target cleavage 20.6 Off-target activity prediction 20.7 Online databases and bioinformatics tools for designing an optimal gRNA 20.8 Modes of CRISPR/Cas9 delivery 20.8.1 Plasmid-mediated transgene delivery method 20.8.2 Transgene-free ribonucleoproteins delivery method 20.9 Conclusion and future prospects References Chapter-21---RNA-interference-and-CRISPR-Cas9-technique_2021_CRISPR-and-RNAi 21 RNA interference and CRISPR/Cas9 techniques for controlling mycotoxins 21.1 Introduction 21.2 Genomics of mycotoxin production 21.3 Environmental impact on genomic imprints for mycotoxin production and plant defenses 21.4 RNA interference 21.4.1 Functional mechanism 21.4.2 Applications in plant mycotoxin protection 21.4.3 Applications of RNAi for reduced mycotoxin production in fungi 21.4.4 Applications of RNAi for host-induced gene silencing 21.5 Clustered regularly interspaced short palindromic repeats 21.5.1 Functional mechanism 21.5.2 Applications in plant mycotoxin protection 21.5.2.1 Applications of CRISPR technology within mycotoxigenic fungi 21.5.3 Applications of CRISPR technology within plants for protection from mycotoxins 21.6 Genetic interconnection of mycotoxin disease pathogenesis 21.7 Green mycotoxin protection 21.8 Conclusion and future prospects Acknowledgments References Chapter-22---Role-of-small-RNA-and-RNAi-technology-toward-_2021_CRISPR-and-R 22 Role of small RNA and RNAi technology toward improvement of abiotic stress tolerance in plants 22.1 Introduction 22.2 Small RNA biogenesis and RNA interference activity in plants 22.3 The role of small RNA and RNA interference in plant abiotic stress responses 22.3.1 Drought stress 22.3.2 Temperature stress 22.3.3 Salinity stress 22.4 Additional RNA-targeting tools: clustered regularly interspaced short palindromic repeat–based technologies 22.5 Conclusion and future perspectives Acknowledgments References Chapter-23---RNAi-based-system-a-new-tool-for-insect_2021_CRISPR-and-RNAi-Sy 23 RNAi-based system a new tool for insects’ control 23.1 Introduction 23.2 The effectiveness of RNAi in biological control and its working mechanism in the attenuation of genes which is essenti... 23.3 Application of RNAi gene technology in the preservation of crops against harmful insects 23.4 Delivery methods of dsRNA into insect cells 23.4.1 Bacterial and fungal cells as carriers of dsRNA 23.4.2 Viral vector as a delivery vehicle 23.4.3 Nanoparticle as a delivery vehicle 23.4.4 Liposomes and protein as a delivery system 23.4.5 Genetically modified plants as a delivery system 23.4.6 Spraying as a delivery system 23.5 Parameters taken into consideration when applying dsRNA 23.5.1 Influence of sensitivity and resistance of the target species 23.5.2 Influence of enzymatic activity on the efficiency of knockdown 23.5.3 Influence of target genes on the efficiency of knockdown 23.6 Risks of dsRNA to human health and environment 23.7 Conclusion References Chapter-24---RNAi-strategy-for-management-of-phytopa_2021_CRISPR-and-RNAi-Sy 24 RNAi strategy for management of phytopathogenic fungi 24.1 Introduction 24.2 RNAi in plants and fungi 24.3 Trans-kingdom siRNA communication 24.4 RNAi against phytopathogenic fungi 24.5 Host-induced gene silencing strategy against phytopathogenic fungi 24.6 Spray-induced gene silencing strategy against phytopathogenic fungi 24.7 Concluding Remarks References Chapter-25---CRISPR-applications-in-plant-bacteriology--_2021_CRISPR-and-RNA 25 CRISPR applications in plant bacteriology: today and future perspectives 25.1 Introduction 25.2 CRISPR applications in plant bacteriology 25.2.1 Genetic diversity 25.2.2 Strain typing 25.2.3 Virulence and pathogenicity 25.2.4 Diagnostics 25.3 CRISPR applications in plant bacteriology management 25.3.1 Breeding for resistance against phytopathogenic bacteria 25.3.2 CRISPR-based antimicrobials against food-borne bacteria 25.3.3 Beneficial bacteria 25.4 Challenges and technical considerations 25.5 Future perspectives and conclusion References Chapter-26---RNAi-based-gene-silencing-in-plant-parasitic_2021_CRISPR-and-RN 26 RNAi-based gene silencing in plant-parasitic nematodes: a road toward crop improvements 26.1 Introduction 26.2 Plant–nematode interaction and disease development 26.3 Host-induced dsRNAs for targeting nematode genes 26.3.1 HIGS in nematodes 26.3.2 Plant miRNAs in response to nematode 26.3.3 Plant small noncoding RNAs in response to nematode 26.4 Biosafety and limitations 26.5 Conclusion and perspectives Acknowledgments References Chapter-27---RNA-interference-mediated-viral-disease-re_2021_CRISPR-and-RNAi 27 RNA interference-mediated viral disease resistance in crop plants 27.1 Introduction 27.2 Major crop diseases 27.3 RNA interference in viral resistance 27.4 Applications of RNA interference in viral-resistant crop development 27.4.1 Rice 27.4.2 Wheat 27.4.3 Potato 27.4.4 Tomato 27.4.5 Soybeans 27.4.6 Cassava 27.5 Biosafety considerations 27.6 Conclusion and future prospect Acknowledgments References Chapter-28---Phytoalexin-biosynthesis-through-RNA-interfe_2021_CRISPR-and-RN 28 Phytoalexin biosynthesis through RNA interference for disease resistance in plants 28.1 Introduction 28.2 Utility of phytoalexins 28.3 Diversity of phytoalexins 28.4 Detoxification of phytoalexins 28.5 RNA interference 28.5.1 Brief history of RNA interference 28.5.2 Steps involved in RNA interference 28.5.3 Components of RNA interference 28.6 RNA interference in phytoalexin biosynthesis 28.6.1 RNA interference for elucidation of the gene(s) involved in biosynthesis of phytoalexins 28.6.2 RNA interference for suppression of negative regulators of phytoalexins 28.6.3 RNA interference for antidetoxification of phytoalexins by pathogens 28.7 Conclusions References Chapter-29---Polymer-and-lipid-based-nanoparticles-to-de_2021_CRISPR-and-RNA 29 Polymer and lipid-based nanoparticles to deliver RNAi and CRISPR systems 29.1 Introduction 29.2 Polymer-based nanoparticles and their properties 29.3 Natural polymers 29.3.1 Alginate 29.3.2 Dextran 29.3.3 Cyclodextrin 29.3.4 Gelatin—a protein polymer 29.4 Synthetic polymers 29.4.1 Polylactic-co-glycolic acid 29.4.2 Poly-ε-caprolactone 29.5 Delivery of polymer-based nanoparticle 29.5.1 Lipid-based PNPs 29.5.2 Dendrimers 29.5.3 Biopolymeric based PNPs 29.5.4 Nanostructure lipid-multilayer gene carrier 29.5.5 Magnetic nanoparticle-based LipoMag 29.6 Polymer and lipid-based nanoparticles-mediated delivery towards advancing plant genetic engineering 29.6.1 Polymer and lipid-based nanoparticles for efficient delivery of siRNA 29.6.2 Polymer and lipid-based nanocarriers deliver siRNA to intact plant cells 29.7 Polymer and lipid-based nanoparticles transfection enhances RNAi and CRISPR systems in plants 29.8 Advantages of polymer and lipid-based nanoparticles 29.9 Future directions and concluding remarks 29.10 Conclusion References Chapter-30---Inorganic-smart-nanoparticles--a-new-tool-to_2021_CRISPR-and-RN 30 Inorganic smart nanoparticles: a new tool to deliver CRISPR systems into plant cells 30.1 Introduction 30.2 Inorganic nanocarriers for gene delivery 30.2.1 Silica nanoparticle-based transient gene 30.2.2 Carbon-nanotubes transient gene 30.2.3 Magnetic nanoparticle-based transient gene 30.2.4 Gold nanoparticle-based transient gene 30.3 Internalization mechanisms 30.4 Agri-food applications 30.5 Limitations of gene nanocarriers 30.6 Further recommendations and conclusion References Chapter-31---Regulatory-aspects--risk-assessment--and-toxi_2021_CRISPR-and-R 31 Regulatory aspects, risk assessment, and toxicity associated with RNAi and CRISPR methods 31.1 Introduction 31.2 Regulatory aspects of RNAi and CRISPR methods 31.2.1 USA and Canada 31.2.1.1 USA 31.2.1.2 Canada 31.2.2 European Union 31.2.2.1 Approval for deliberate release 31.2.2.2 Approval for food and feed purpose 31.2.2.3 Post approval considerations 31.2.2.4 RNAi-based regulations 31.2.2.5 CRISPR-based regulations 31.2.3 China 31.2.4 Pakistan 31.2.5 Other countries 31.2.5.1 Australia 31.2.5.2 Brazil 31.2.5.3 Argentina 31.2.5.4 Chile 31.2.5.5 New Zealand 31.2.5.6 Japan 31.3 Toxicity and risk assessment of RNAi and CRISPR methods 31.3.1 Toxicity and risk assessment of RNAi 31.3.1.1 Molecular characterization 31.3.1.2 Food and feed toxicity and risk assessment of RNAi 31.3.1.3 Environmental toxicity and risk assessment of RNAi 31.3.2 Toxicity and risk assessment of CRISPR 31.3.2.1 Toxicity and risk assessment associated with off-targeting effects of CRISPR 31.3.2.2 Toxicity and risk assessment associated with persisted Cas9 activity 31.3.3 Toxicity and risk assessment of RNAi and CRISPR using 10 step approach 31.4 Conclusion and outlook References Further reading Chapter-32---Gene-editing-in-filamentous-fungi-and-oomyc_2021_CRISPR-and-RNA 32 Gene editing in filamentous fungi and oomycetes using CRISPR-Cas technology 32.1 Introduction 32.2 Characteristics of oomycetes 32.3 Principles of CRISPR technology 32.4 Gene editing in oomycetes 32.4.1 Gene editing for pathogen prevention in oomycetes 32.4.2 Gene editing for identification of virulence gene in oomycetes and fungi 32.4.3 Expected application of CRISPR-Cas toolkit to other oomycetes 32.5 Gene editing in filamentous fungi 32.5.1 CRISPR-mediated endonucleases use in filamentous fungi 32.5.2 CRISPR-Cas-mediated single-gene disruption in filamentous fungi 32.5.3 CRISPR-Cas-mediated multiple gene disruption in filamentous fungi 32.5.4 Gene editing in industrial filamentous fungi by CRISPR-Cas 32.5.5 CRISPR-Cas-mediated genetic manipulation of pathogenic filamentous fungi 32.5.6 DNA and selectable-marker-free genome editing in filamentous fungi 32.6 Concluding remarks and future perspective References Chapter-33---CRISPR-Cas-technology-towards-improvement-of_2021_CRISPR-and-RN 33 CRISPR–Cas technology towards improvement of abiotic stress tolerance in plants 33.1 Introduction 33.2 CRISPR–Cas system 33.3 Harnessing the potential of CRISPR–Cas system against abiotic stresses 33.3.1 Low or high temperature 33.3.2 Drought 33.3.3 Salinity 33.3.4 Heavy metals 33.3.5 Herbicides resistance 33.4 Future perspectives 33.5 Conclusion References Chapter-34---Databases-and-bioinformatics-tools-for-genome_2021_CRISPR-and-R 34 Databases and bioinformatics tools for genome engineering in plants using RNA interference 34.1 Introduction 34.2 Disadvantages and limitations associated with RNAi 34.2.1 Strategies to minimize the off-target effects of RNAi 34.2.2 Designing specific and potent siRNA 34.3 Online databases for knowledge-based resources of small ncRNAs sequences 34.4 Online bioinformatics tools for designing highly specific and efficient siRNA/miRNA 34.5 Conclusion and future prospects References Index_2021_CRISPR-and-RNAi-Systems Index