دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک ریاضی ویرایش: 2 نویسندگان: I. I. Bigi, A. I. Sanda سری: ISBN (شابک) : 9780521847940, 052184794X ناشر: سال نشر: 2009 تعداد صفحات: 506 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب CP Violation, 2nd Edition (Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نقض CP ، چاپ دوم (تک نگاری های کمبریج در مورد فیزیک ذرات ، فیزیک هسته ای و کیهان شناسی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
چرا ماده در جهان ما بلافاصله پس از ایجاد آن با پادماده نابود نشد؟ این کتاب ابزارهای نظری لازم برای درک این پدیده را ارائه می کند. با انعکاس انفجار اخیر نتایج جدید، این ویرایش دوم به طور قابل توجهی گسترش یافته است. قبل از توصیف نظریه Kobayashi-Maskawa (KM) برای نقض CP و درک ما از نقض CP در واپاشی کائون، ترکیب بار، برابری و معکوس زمانی را معرفی می کند. این نشان میدهد که چگونه کشف مزونهای B آزمایشگاه جدیدی را برای مطالعه نقض CP با تئوری KM که عدم تقارنهای بزرگ را پیشبینی میکند، فراهم کرده است، و چگونگی تأیید این پیشبینیها از اولین ویرایش این کتاب را مورد بحث قرار میدهد. این باعث شد که M. Kobayashi و T. Maskawa جایزه نوبل فیزیک 2008 را دریافت کنند. فصلهای بعدی جستجوی نظریه جدیدی از پویایی بنیادی طبیعت را شرح میدهند. این کتاب برای محققان انرژی های بالا، فیزیک اتمی و هسته ای و تاریخ و فلسفه علم مناسب است.
Why didn't the matter in our Universe annihilate with antimatter immediately after its creation? This book presents theoretical tools necessary to understand this phenomenon. Reflecting the recent explosion of new results, this second edition has been substantially expanded. It introduces charge conjugation, parity and time reversal, before describing the Kobayashi-Maskawa (KM) theory for CP violation and our understanding of CP violation in kaon decays. It reveals how the discovery of B mesons has provided a new laboratory to study CP violation with KM theory predicting large asymmetries, and discusses how these predictions have been confirmed since the first edition of this book. This lead to M. Kobayashi and T. Maskawa receiving the 2008 Nobel Prize for Physics. Later chapters describe the search for a new theory of nature's fundamental dynamics. This book is suitable for researchers in high energy, atomic and nuclear physics and the history and philosophy of science.
Half-title Series-title Title Copyright Dedication Contents Preface to the second edition Preface to the first edition Part I Basics of CP violation 1 Prologue Synopsis 2 Prelude: C, P and T in classical dynamics 2.1 Classical mechanics 2.1.1 Parity 2.1.2 Time reversal 2.2 Electrodynamics 2.2.1 Charge conjugation 2.2.2 Parity 2.2.3 Time reversal 2.3 Résumé Problems 3 C, P and T in non-relativistic quantum mechanics 3.1 Parity 3.2 Charge conjugation 3.3 Time reversal 3.4 Kramers\' degeneracy 3.5 Detailed balance 3.6 Electric dipole moments 3.6.1 The neutron EDM 3.6.2 Water molecules and atoms 3.6.3 Dumb-bells 3.6.4 Schiff\'s theorem 3.7 Résumé Problems 4 C, P and T in relativistic quantum theories 4.1 Notation 4.2 Spin-1 fields 4.3 Spin-0 fields 4.3.1 Parity 4.3.2 Charge conjugation 4.3.3 Time reversal 4.4 Spin-1/2 fields 4.4.1 Parity 4.4.2 Charge conjugation 4.4.3 Time reversal 4.5 CP and CPT transformations 4.6 Some consequences of the CPT theorem 4.7 ♠ Back to first quantization ♠ 4.8 ♠ Phase conventions for C and P ♠ 4.9 ♠ Internal symmetries ♠ 4.10 The role of final state interactions 4.10.1 T invariance and Watson\'s theorem 4.10.2 Final state interactions and partial widths 4.10.3 ♠ T symmetry and final state interactions ♠ 4.11 Résumé and outlook Problems 5 The arrival of strange particles 5.1 The discovery of strange particles 5.2 The θ – τ puzzle 5.3 The ΔI = 1/2 rule 5.4 The existence of two different neutral kaons 5.5 CP invariant K0 – K0 oscillations 5.6 Regeneration – which is heavier: KL or KS? 5.7 The quiet before the storm 5.8 The discovery of CP violation Problems 6 Quantum mechanics of neutral particles 6.1 The effective Hamiltonian 6.2 Constraints from CPT, CP and T 6.3 Spherical coordinates 6.4 ♠ On phase conventions ♠ 6.5 ♠ ΔM and ΔΓ ♠ 6.6 Master equations of time evolution 6.7 CP violation: classes (A), (B) and (C) 6.8 ♠ On the sign of the CP asymmetry ♠ 6.9 What happens if you don\'t observe the decay time? 6.10 Regeneration 6.11 The Bell–Steinberger inequality 6.12 Résumé on P0 – P0 oscillations Problems Part II Theory and experiments 7 The quest for CP violation in K decays – a marathon 7.1 The landscape Where has CP violation emerged? Chasing after K0 and K0 The time evolution of the decay rate Direct test of T invariance Difference in integrated rates 7.2 KL → ππ decays 7.2.1 Decay amplitudes 7.2.2 Constraints on AI and AI 7.2.3 Relating ε to M – 1/2Γ 7.2.4 The phase of ε 7.3 Semileptonic decays 7.4 ♠ P[omitted] in K →l πμν decays ♠ Final state interactions mimicking T violation Phenomenological analysis 7.5 ♠K → 3π ♠ 7.5.1 KS → 3π0 7.5.2 KS → π+π–π0 7.5.3 K± → π±π+π– 7.6 ♠ Hyperon decays ♠ 7.7 The bard\'s song Problems 8 The KM implementation of CP violation 8.1 A bit of history 8.2 The Standard Model 8.2.1 QCD 8.2.2 The Glashow–Salam–Weinberg model 8.3 The KM ansatz 8.3.1 The mass matrices 8.3.2 Parameters of consequence 8.3.3 Describing weak phases through unitarity triangles 8.4 A tool kit 8.4.1 The angles of the unitarity triangle 8.5 The pundits\' judgement Problems 9 The theory of KL → ππ decays 9.1 The ΔS = 1 non-leptonic Lagrangian 9.2 Evaluating matrix elements 9.3 Chiral symmetry and vacuum saturation approximation 9.4 K → ππ decays 9.5 ♠ Computation of ε\'/ε ♠ 9.5.1 Determining matrix elements from data 9.5.2 Numerical estimates 9.6 ΔS = 2 amplitudes 9.6.1 ΔMK 9.6.2 ε 9.7 ♠ SM expectations for (P[omitted]) in K13 decays ♠ 9.8 Résumé Problems 10 Paradigmatic discoveries in B physics 10.1 The emerging beauty of B hadrons 10.1.1 The discovery of beauty 10.1.2 The longevity of B mesons 10.1.3 The fluctuating identity of neutral B mesons 10.1.4 Another triumph for CKM dynamics 10.2 What does the SM say about oscillations? 10.2.1 Computation of ΔM 10.3 ♠ On the sign of ΔMB ♠ 10.4 CP violation in B decays – like in K decays, only different 10.5 From sweatshops to beauty factories 10.5.1 Disappointment at a symmetric machine 10.5.2 A crazy idea 10.6 First reward – Bd → ΨKs 10.7 The second reward – Bd → π+ π– 10.8 More rewards – B0 → Kπ, η\'Ks 10.8.1 B → Kπ, η1Ks 10.8.2 Bd → η\'Ks 10.9 CPT invariance vs. T and CP violation 10.10 Reflections 10.10.1 On the virtue of \'over-designing\' 10.10.2 The \'unreasonable\' success of CKM theory 10.10.3 Praising hadronization 10.10.4 EPR correlations – a blessing in disguise 10.11 Résumé Problems 11 Let the drama unfold – B CP phenomenology 11.1 Pollution from water fowls and others Living with penguins 11.2 Determining Φ1 11.2.1 How clean is Bd → ΨKS? 11.2.2 ♠ Other ways to get at Φ ♠ 11.3 Determining Φ2 11.3.1 Penguins in Bd → ππ 11.3.2 Overcoming pollution 11.3.3 B → ππ 11.3.4 B → πρ, ρρ 11.4 Determining Φ3 11.4.1 Using doubly Cabibbo-suppressed decays 11.4.2 Dalitz plot analysis 11.5 Search for New Physics 11.5.1 Wrong-sign semileptonic decays: Class(B) 11.5.2 ♠ Theoretical estimate of ASL ♠ 11.5.3 What can oscillations tell us about New Physics? 11.5.4 Bs → ΨΦ, Ψη(\'), D+sD–s: Class (C2) 11.5.5 Bs → KSρ0: Class (C1, C2) 11.5.6 Bd → ΦKS, ηKS: Class(C2) 11.5.7 Bs → D±sK[omitted]: Class(C1,C2) 11.6 Résumé A final thought Problems 12 Rare K and B decays – almost perfect laboratories 12.1 Rare K decays 12.1.1 KL → μ+μ– and K+ → π+e+e– 12.1.2 KL → π01+1– 12.1.3 K → πνν 12.1.4 ♠ K → ππγ(*) ♠ 12.2 Beauty decays 12.2.1 B → Xs γ 12.2.2 B → μ+μ– 12.2.3 B → X + νν 12.2.4 B → Xs + μ+μ– 12.3 Résumé Problems 13 ♠ CPT violation – could it be in K and B decays? ♠ 13.1 Equality of masses and lifetimes 13.2 Theoretical scenarios 13.3 CPT phenomenology for neutral kaons 13.3.1 Semileptonic decays 13.3.2 Asymmetries Tests of T and CPT invariance Experimental results CPT Tests in the phases of η+– and η00 Estimating Im Γ12 13.3.3 Non-leptonic neutral K decays 13.4 Harnessing EPR correlations 13.4.1 Φ factory Time-integrated asymmetries 13.4.2 Tests of CPT symmetry in B decays 13.5 The moralist\'s view Problems 14 CP violation in charm decays – the dark horse 14.1 On the uniqueness of charm 14.2 D0 – D0 oscillations 14.2.1 Experimental evidence D → K+K– D → K+π– D → KSπ+π– D0 → l–X 14.2.2 First résumé 14.2.3 Theoretical expectations on ΔMD & ΔΓD 14.2.4 New Physics contributions to ΔMD and ΔΓD? 14.2.5 ♠ Numerical predictions for ΔMD and ΔΓD ♠ 14.3 CP violation 14.3.1 Preliminaries 14.3.2 CP asymmetries without D0 – D0 oscillations Partial widths Final state distributions 14.3.3 Oscillations – the new portal to CP violation Non-leptonic modes Rare modes Semileptonic transitions 14.3.4 Harnessing EPR correlations 14.4 Résumé and a call to action Problems 15 The strong CP problem 15.1 The problem 15.2 Why G · G matters and F · F does not 15.3 ♠ The U(1)A problem ♠ 15.4 QCD and quark masses 15.5 The neutron electric dipole moment 15.6 Are there escape hatches? 15.6.1 Soft CP violation 15.7 Peccei–Quinn symmetry 15.8 The dawn of axions – and their dusk? 15.8.1 Visible axions 15.8.2 Invisible axions 15.9 The pundits\' judgement Problems Part III Looking beyond the Standard Model 16 Quest for CP violation in the neutrino sector 16.1 Experiments 16.1.1 Solar neutrinos Homestake GALLEX, SAGE (Super-)Kamiokande SNO 16.1.2 Atmospheric neutrinos 16.1.3 Man-made neutrinos KamLand K2K 16.1.4 Qualitative summary 16.2 Basics of neutrino oscillations 16.2.1 Mass hierarchy 16.2.2 Estimating θ13 and θ12 16.2.3 Atmospheric neutrinos 16.3 Neutrino mixing parameters 16.4 The MSW effect 16.5 Neutrino masses 16.6 Neutrino mixing with Majorana neutrinos 16.7 Phases in the PMNS matrix 16.8 CP and T violation in ν oscillations 16.9 How to measure the Majorana phase? 16.10 The bard\'s song Problems 17 Possible corrections to the KM ansatz: right-handed currents and non-minimal Higgs dynamics 17.1 Left–right symmetric models 17.1.1 Basics 17.1.2 The existing phenomenology in strange decays ΔS = 2 transitions ΔS = 1 transitions Muon transverse polarization in Kμ3 decays Final state asymmetries in hyperon decays 17.1.3 Electric dipole moments 17.1.4 Prospects for CP asymmetries in beauty decays 17.2 CP violation from Higgs dynamics 17.2.1 A simple example 17.2.2 Sources of CP violation CP phenomenology with light fermions Models with FCNC Models without FCNC Electric dipole moments 17.2.3 CP phenomenology with heavy fermions Models with FCNC Models without FCNC 17.3 The pundits\' résumé Problems 18 CP violation without non-perturbative dynamics – top quarks and charged leptons 18.1 Production and decay of top quarks 18.1.1 σ(tLtL) vs σ(tRtR) 18.1.2 Final state distributions in e+e– → ttH0 18.2 On CP violation with leptons 18.2.1 Positronium 18.2.2 μ decays 18.2.3 τ decays Partial width CP asymmetries in τ → Kπντ CP asymmetries in final state distributions Other τ decay modes 18.2.4 τ production Electric and weak dipole moments of τ 18.3 Resume on top and τ transitions Problems 19 SUSY-providing shelter for Higgs dynamics 19.1 The virtues of SUSY 19.2 Low-energy SUSY 19.2.1 The MSSM 19.3 Gateways for CP violation 19.3.1 A first glance at CP phases in MSSM 19.3.2 Squark mass matrices 19.3.3 Beyond MSSM 19.4 Confronting experiments 19.4.1 Electric dipole moments 19.4.2 SUSY contributions to ΔS ≠ 0 ≠ ΔB transitions 19.4.3 Bounds on MI SUSY parameters 19.4.4 Can SUSY be generic? 19.5 The pundits\' résumé Problems 20 Minimal flavour violation and extra dimensions 20.1 On minimal flavour violation 20.1.1 Defining, implementing and probing MFV 20.2 Extra (space) dimensions 20.3 The pundits\' call 21 Baryogenesis in the universe 21.1 The challenge 21.2 The ingredients 21.3 GUT baryogenesis 21.4 Electroweak baryogenesis 21.5 Leptogenesis driving baryogenesis 21.6 Wisdom – conventional and otherwise Part IV Summary 22 Summary and perspectives 22.1 The cathedral builder\'s paradigm 22.1.1 Present status and general expectations 22.1.2 A look back 22.2 Agenda for the future 22.3 Final words References Index