دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: علم شیمی ویرایش: نویسندگان: C. Esteban, R. J. García López, A. Herrero, F. Sánchez سری: Cambridge Contemporary Astrophysics ISBN (شابک) : 052182768X, 9780511184819 ناشر: Cambridge University Press سال نشر: 2004 تعداد صفحات: 314 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Cosmochemistry: The Melting Pot of the Elements به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کیهان شیمی: ظرف ذوب عناصر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بررسی به موقع تحولات کیهان شیمی در دهه گذشته
A timely review of developments in cosmochemistry over the last decade.
Cover......Page 1
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 7
Participants......Page 9
Preface......Page 13
Acknowledgements......Page 15
1. Introduction......Page 17
2. The Early Evolution of the Universe......Page 18
2.2. Dynamics......Page 19
2.2.1. Counting Relativistic Degrees of Freedom......Page 20
3.1.1. Neutron – Proton Interconversion......Page 22
3.2. The SBBN-Predicted Abundances......Page 23
4. Observational Status of the Relic Abundances......Page 25
4.1. Deuterium......Page 26
4.2. Helium-3......Page 29
4.3. Helium-4......Page 30
4.4. Lithium-7......Page 32
5.1. Deuterium – The Baryometer Of Choice......Page 34
5.2. SBBN Baryon Density – The Baryon Density At 20 Minutes......Page 35
5.3. CMB Baryon Density The Baryon Density At A Few Hundred Thousand Years......Page 36
5.5. Baryon Density Concordance......Page 37
5.6. Testing The Consistency Of SBBN......Page 38
6. BBN In Non-Standard Models......Page 39
6.1. Degenerate BBN......Page 40
7. Summary......Page 43
REFERENCES......Page 45
1. Introduction......Page 47
1.1. Nuclear Reactions......Page 49
1.2. Stellar Evolution......Page 50
2.1. Yields from massive star models......Page 54
2.2. Oxygen isotopes from massive stars......Page 56
2.2.1. The O yields in massive star models......Page 57
2.2.2. The O yield and stellar wind mass loss......Page 59
2.2.3. The production of O as function of metallicity......Page 61
2.2.5. Clues from oxygen......Page 62
2.3. Pre-supernova surface abundances......Page 63
2.4. Effects of Rotation......Page 64
3.1. Low mass stars......Page 71
3.2. Massive stars......Page 73
4. Nucleosynthesis in Binary Systems......Page 74
4.1. Aluminium in Massive Binaries......Page 75
4.2.1. Supersoft X-ray Sources......Page 77
4.2.2. Helium shell flashes......Page 80
4.2.3. White dwarf spin-up......Page 81
5.1.1. Does the Eddington limit apply in the stellar interior?......Page 83
5.1.3. Rotating very massive stars......Page 85
5.2. Evolution of very massive stars......Page 87
5.3. Supermassive stars......Page 91
REFERENCES......Page 92
1. Introduction......Page 97
2.1. Sites......Page 98
2.2. Surveying tools......Page 99
3. Numbers and Notation......Page 100
4.2. The Spite Plateau......Page 102
5. An Assumption and a Warning......Page 103
6. Black Boxes and Black Magic......Page 105
6.1. Why are abundance analyses incomplete?......Page 106
6.2. Why does a line of E yield A(E) = n(E)/n(H)?......Page 107
6.3. The Curve of Growth......Page 108
7.2. Theoretical Proposals......Page 110
7.3.2. Lithium from Novae?......Page 113
7.3.4. Galactic Evolution of Beryllium......Page 115
7.3.5. Galactic Evolution of Boron......Page 117
8.1. Introduction......Page 118
8.2. Nuclear physics of the s-process......Page 120
8.3. Operation of the s-process......Page 121
8.4. AGB stars and the s-process......Page 122
8.5. Weak s-process at low metallicities?......Page 124
REFERENCES......Page 126
1. Introduction......Page 131
2.1.1. Global ionization budget......Page 132
2.1.2. The ionization structure......Page 134
2.2. Heating and cooling......Page 135
2.3. Line intensities......Page 136
3.1. Empirical methods......Page 137
3.1.1. Direct methods......Page 138
3.1.2. Strong line or statistical methods......Page 140
3.2.1. Philosophy of model fitting......Page 142
3.2.2. Photoionization codes......Page 143
4.1.1. Ionization, recombination and charge exchange......Page 144
4.2. Stellar atmospheres......Page 145
4.3. Reddening correction......Page 146
4.4. Aperture correction, nebular geometry and density inhomogeneities......Page 147
4.5.2. Small scale temperature variations......Page 148
4.6. The optical recombination lines mystery......Page 151
4.7.1. Evidence for the presence of dust in the ionized regions......Page 152
4.7.4. The effect of dust obscuration on the emission line spectrum......Page 153
4.7.5. The effects of grains on heating and cooling of the gas......Page 154
4.8. The specific case of the helium abundance determination......Page 155
5.1. The Orion nebula: a benchmark......Page 157
5.2. Abundance patterns in the solar vicinity and the solar abundance discrepancy......Page 158
5.3. Abundance gradients in the Galaxy from H ii regions......Page 159
5.4. The Galactic center......Page 160
5.5. Nebulae around evolved massive stars......Page 162
6. Observational results on abundances in planetary nebulae......Page 163
6.1. NGC 7027 and IC 418: two test cases......Page 164
6.2. What do PN abundances tell us?......Page 165
6.3.1. The universal Ne/H versus O/H relation......Page 167
6.3.2. Abundance gradients from PNe in the Milky Way......Page 168
6.3.3. PNe in the Galactic bulge......Page 169
6.3.5. PNe probe the histories of nearby galaxies......Page 171
6.4.1. Global abundance ratios......Page 173
6.4.2. Abundance inhomogeneities......Page 174
REFERENCES......Page 177
1. Introduction......Page 187
2.1. Spectroscopy of H II Regions and Planetary Nebulae......Page 188
2.1.1. Observational Considerations......Page 190
2.1.2. The Direct Method......Page 191
2.1.3. “Empirical” (Strong-Line) Calibrations......Page 193
2.1.4. Photoionization Models......Page 194
2.3. Stellar Photometry and Color-Magnitude Diagrams......Page 198
2.4. Spectrum Synthesis of Stellar Populations......Page 199
3. Abundances in Local Group Dwarf Elliptical Galaxies......Page 200
3.2. Element Ratios......Page 202
4.1.1. Neutral and Molecular Gas......Page 204
4.1.2. Stellar Mass Densities......Page 205
4.2. Spatial Abundance Profiles......Page 206
4.3. Metallicity versus Galaxy Luminosity/Mass......Page 207
4.4. Abundance Gradient Variations......Page 210
4.5. Metallicity vs. Surface Brightness......Page 213
4.7. Spiral Bulges......Page 214
4.8. Cluster Spirals and Environment......Page 216
5.1. Helium......Page 217
5.2. Carbon......Page 219
5.3. Nitrogen......Page 222
5.4. Neon, Sulfur and Argon......Page 223
5.5. Other Elements......Page 226
6. Open Questions and Concluding Remarks......Page 227
REFERENCES......Page 228
1. Basic parameters of chemical evolution......Page 233
2.2. The tracers of star formation......Page 234
2.4. Derivation of the IMF......Page 235
3. Nucleosynthesis......Page 236
3.2. Stellar Nucleosynthesis......Page 237
3.3. Supernova Progenitors......Page 238
3.5. Stellar yields......Page 239
4.1. Analytical models......Page 240
4.2. Failure of the Simple Model......Page 241
5. Equations with Type Ia and II SNe......Page 242
5.1. Type Ia SN rates......Page 243
6.2. The two-infall model......Page 244
6.3. Applications to the Local Disk......Page 245
6.4. Applications to the whole disk......Page 247
6.5. The Role of Radial Flows in the evolution of the Galactic Disk......Page 249
7. Disks of Other Spirals......Page 250
8. Conclusions on the Milky Way and other spirals......Page 252
9.1. Observational properties......Page 253
9.3. Formation of Ellipticals at low z......Page 254
9.5. Models for ellipticals based on galactic winds......Page 255
9.7. Averaged Stellar Metallicities......Page 257
9.8. Multi-Zone Models......Page 258
11. Evolution of Dwarf Galaxies......Page 260
11.2. Results for BCG from chemical models......Page 261
11.3. Results from chemo-dynamical models......Page 262
11.4. Dwarf galaxies and DLA Systems......Page 263
12.2. MV88 Results......Page 265
12.3. [α/Fe] Ratios in the ICM......Page 266
13. Conclusions on the ICM......Page 267
REFERENCES......Page 268
1.1. Some Basic Concepts......Page 273
2.1. What Are They?......Page 275
2.2. Why Do We Care?......Page 277
2.3. The Metallicity of DLAs......Page 279
2.4. Element Ratios......Page 282
2.4.1. Dust in DLAs......Page 283
2.4.2. Alpha-capture elements......Page 284
2.4.3. The Nucleosynthesis of Nitrogen......Page 286
3. The Lyman Alpha Forest......Page 288
3.1. Metals in the Lyα Forest......Page 291
3.2. C IV at the Highest Redshifts......Page 293
4. Lyman Break Galaxies......Page 294
4.1. Stellar Populations and the Initial Mass Function......Page 297
4.2. Element Abundances in the Interstellar Gas......Page 299
4.3. The Oxygen Abundance in H II Regions......Page 301
4.4. Dating the Star Formation Activity......Page 302
4.5. Galactic-Scale Outflows......Page 304
5.1. A Global View of Metal Enrichment in the Universe Two Billion Years after the Big Bang......Page 305
5.2. Missing Metals?......Page 308
REFERENCES......Page 311