دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Christian Vargel
سری:
ISBN (شابک) : 0080999255, 9780080999258
ناشر: Elsevier Science
سال نشر: 2019
تعداد صفحات: 774
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 31 مگابایت
در صورت تبدیل فایل کتاب Corrosion of Aluminium به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب خوردگی آلومینیوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
خوردگی آلومینیوم، ویرایش دوم، جنبه های عملی و کلی خوردگی آلیاژهای آلومینیوم را برجسته می کند. فصلها به خوانندگان تازهکار کمک میکنند تا ویژگیهای متالورژیکی، شیمیایی و فیزیکی آلیاژهای آلومینیوم را درک کنند. نویسنده کریستین وارگل رویکردی به سبک حرفهای را اتخاذ میکند که مبتنی بر تخصص او در طول 40 سال کار حرفهای در زمینه خوردگی آلومینیوم است. این کتاب مقاومت به خوردگی آلومینیوم را ارزیابی میکند، معیاری کلیدی که به عنوان یکی از شرایط اصلی برای توسعه بسیاری از کاربردهای آلومینیوم در حملونقل، ساختوساز، انتقال نیرو و موارد دیگر شناخته میشود.
Corrosion of Aluminium, Second Edition, highlights the practical and general aspects of the corrosion of aluminium alloys. Chapters help readers new to the topic understand the metallurgical, chemical and physical features of aluminium alloys. Author Christian Vargel adopts a practitioner styled approach that is based on the expertise he has gained during a 40-year career in aluminium corrosion. The book assesses the corrosion resistance of aluminium, a key metric recognized as one of the main conditions for the development of many uses of aluminium in transport, construction, power transmission, and more.
Cover Corrosion of Aluminium Copyright Dedication Foreword Foreword to the original edition Preface Introductory remarks Part A A.1 - Historical reviews 1.1 Chemically produced aluminium 1.2 Electrochemically produced aluminium References A.2.- Physical properties of aluminium A.3 - The advantages of aluminium 3.1 The hymn of the cannonball 3.2 Lightness 3.3 Thermal conductivity 3.4 Electrical conductivity 3.5 Resistance to corrosion 3.6 Suitability for surface treatments 3.7 The diversity of aluminium alloys 3.8 The diversity of semi-products 3.9 The functionality of castings and extrusions functionality 3.10 Ease of use 3.11 Recycling References A.4 - Aluminium alloy series 4.1 Alloy series 4.2 Alloying elements 4.3 Additives 4.4 Impurities 4.5 Designation of aluminium alloys A.5 - Cast aluminium alloys 5.1 Principal casting alloys 5.1.1 Unalloyed aluminium, 1xx.x series 5.1.2 Aluminium-copper, 2xx.x series 5.1.3 Aluminium-silicon, 4xx.x series 5.1.4 Aluminium-magnesium, 5xx.x series 5.2 Methods of elaboration 5.3 Heat treatments A.6 - Wrought aluminium alloys 6.1 Strain-hardenable alloys 6.1.1 Strain-hardenable alloys 6.1.2 Softening by thermal annealing 6.1.3 Concept of metallurgical tempers 6.2 Age-hardenable alloys 6.2.1 The principle of age hardening 6.2.1.1 Solution heat treatment 6.2.1.2 Quenching 6.2.1.3 Natural ageing 6.2.1.4 Artificial ageing 6.2.2 Intermediate (soft) annealing 6.2.3 Designation of metallurgical tempers Reference A.7 - Selection criteria 7.1 General remarks 7.2 Selecting an alloy 7.2.1 Selecting an alloy series 7.2.2 Selecting a metallurgical temper 7.2.2.1 Strain-hardenable alloys 7.2.2.2 Age-hardenable alloys 7.3 Principal applications of aluminium and its alloys Part B B.1 - The corrosion of aluminium 1.1 Short historical introduction 1.2 Corrosion: an irreversible phenomenon 1.3 Electrochemical basis for metal corrosion 1.4 Electrical double layer 1.5 Electrochemical basis of metal corrosion 1.6 Electrochemical reactions of aluminium corrosion 1.7 Role of oxygen 1.8 Aluminium as a passive metal 1.9 Aluminium passivity and pH 1.9.1 Oxide film stability 1.9.2 Dissolution rate 1.9.3 Aluminium polarization curves 1.10 Electrochemical equilibrium – Pourbaix diagrams 1.10.1 Significance of E-pH diagrams 1.10.2 Impossible immunity of aluminium 1.10.3 Experimental E-pH diagram of alloy AA5086 References B.2.- The notion of potential 2.1 The standard potential of a metal 2.1.1 Measurement of standard potentials 2.1.2 Galvanic series of standard potentials 2.1.3 Meaning of standard potential 2.1.4 The aluminium standard potential 2.2 Corrosion potentials 2.3 Pitting potential 2.3.1 The measurement of Epit 2.3.2 Influence of chloride ion concentration 2.3.3 Influence of pH 2.3.4 Influence of temperature 2.3.5 The significance of the aluminium pitting potential 2.4 The protection potential of aluminium 2.5 The corrosion potential or open circuit potential 2.5.1 Definition of the open circuit potential 2.5.2 Properties of the open circuit potential 2.6 Mesurement of open circuit potentials 2.6.1 Selection of a standard solution 2.6.2 Reference electrodes 2.7 Parameters for measuring corrosion potentials 2.7.1 Influence of immersion time 2.7.2 Influence of temperature 2.7.3 Influence of aeration 2.7.4 Influence of stirring 2.7.5 Influence of the measured area 2.8 Galvanic series of open circuit potentials 2.9 Meaning of open circuit potentials 2.10 The open circuit potential of aluminium 2.10.1 Open circuit potential of aluminium alloys 2.10.2 Influence of temper on the open circuit potential 2.11 The Volta potential References B.3 - The oxide film and passivity of aluminium 3.1 The protective role of oxide films 3.2 The mechanism of formation of oxide films on aluminium 3.3 Parameters affecting the formation of oxide films on aluminium 3.3.1 Influence of oxygen pressure 3.3.2 Influence of temperature 3.3.3 Influence of the surface state 3.3.4 Influence of alloying element additions 3.3.4.1 Magnesium 3.3.4.2 Copper 3.3.4.3 Zinc 3.4 Rate of reconstitution of the oxide film 3.5 Structure of the oxide film 3.6 Low-temperature oxide film growth 3.6.1 Growth of the oxide film in air 3.6.2 Growth of the oxide film in water 3.7 Oxide film properties 3.8 Influence of pH on aluminium passivation 3.9 Note References B.4 - Disturbed surface layers on wrought sheet 4.1 Formation of the disturbed surface layer on wrought sheet 4.2 Consequences on the properties of the sheet 4.3 Structure of the disturbed surface layer 4.4 Activation and susceptibility to corrosion of the disturbed surface layer 4.4.1 Influence of heat treatments 4.4.2 Influence of alloy composition 4.5 Effect of grinding and machining 4.6 Elimination of the disturbed surface layer References B.5 - Influence of alloy composition 5.1 The influence of intermetallics on the corrosion resistance of aluminium alloys 5.1.1 Formation of intermetallic compounds 5.1.2 Types of intermetallic compounds 5.1.3 The main intermetallic compounds occurring in aluminium alloys 5.1.4 The role of intermetallic compounds 5.1.5 Electrochemical properties of intermetallics 5.1.6 The mode of action of intermetallics 5.2 The influence of the chemical composition on the corrosion resistance 5.3 Influence of iron 5.4 Influence of silicon 5.5 Influence of copper 5.5.1 The role of AlCu intermetallics 5.5.2 The S-phase 5.5.3 Dealloying of the S-phase 5.6 Influence of manganese 5.7 Influence of magnesium 5.7.1 The Al3Mg2 intermetallic (β-phase) 5.7.2 The Mg2Si intermetallic 5.7.3 The MgZn2 intermetallic 5.8 Influence of cadmium 5.9 Influence of chromium 5.10 Influence of lithium 5.11 Influence of mercury 5.12 Influence of lead 5.13 Influence of rare earth elements 5.14 Influence of scandium 5.15 Influence of strontium 5.16 Influence of tantalum 5.17 Influence of tin 5.18 Influence of titanium 5.19 Influence of zinc 5.20 Influence of zirconium References Part C C.1 - Uniform corrosion 1.1 Mechanism of uniform corrosion 1.2 Parameters of uniform corrosion 1.3 Measurement of the rate of corrosion 1.4 Mass loss conversions References C.2 - Pitting corrosion 2.1 Mechanism of pitting corrosion 2.1.1 Pitting initiation 2.1.2 Passivity breakdown 2.1.3 Propagation of pitting 2.1.4 Reduction of pitting propagation 2.1.5 Stages in the development of pitting 2.2 Role of intermetallics 2.3 Rate of development of pitting 2.4 Characterization of pitting corrosion 2.4.1 Pitting density 2.4.2 Pitting depth 2.4.3 Probability of pitting 2.5 Sensitivity of aluminium alloys to pitting corrosion References C.3 - Intergranular corrosion 3.1 Role of grain boundaries 3.1.1 Grain boundaries 3.1.2 Properties of grain boundaries 3.1.3 The angle of disorientation between grains 3.2 The mechanism of intergranular corrosion 3.2.1 Intergranular corrosion propagation modes 3.2.2 Development of an anodic depleted zone (precipitate-free zone; PFZ) 3.2.3 Precipitation of an anodic phase 3.3 Anisotropy of intergranular corrosion 3.4 Influence of load constraints 3.5 Influence of heat treatment conditions 3.6 Evaluation of intergranular corrosion References C.4 - Exfoliation corrosion 4.1 Mechanism of exfoliation corrosion 4.1.1 Intergranular corrosion 4.1.2 Hydrogen embrittlement 4.1.3 Mechanical effect 4.1.4 Mechanisms of intergranular dissolution-induced damage and intergranular fracture-induced damage 4.2 Conditions giving rise to exfoliation corrosion 4.2.1 Influence of the microstructure 4.2.2 Thickness of semi-finished products 4.2.3 Cutting 4.2.4 Influence of humidity 4.2.5 Influence of heat treatments 4.3 Assessment of exfoliation corrosion References C.5 - Stress corrosion cracking 5.1 Historical notes 5.2 Definition of stress corrosion cracking 5.3 Mechanism of stress corrosion 5.4 Electrochemical theory of propagation 5.4.1 Mode of propagation 5.4.2 Reactions occurring at the base of cracks 5.4.3 Intergranular corrosion and stress corrosion 5.4.4 Limitations of electrochemical theory 5.5 Hydrogen embrittlement 5.5.1 Proof of hydrogen embrittlement in aluminium 5.5.2 Gruhl's demonstration 5.5.3 Cathodic charging 5.5.4 Penetration of hydrogen in aluminium 5.5.5 Moisture as a source of hydrogen 5.5.6 Hydrogen diffusion 5.5.7 Hydrogen interactions 5.5.8 Mode of crack propagation 5.5.9 Sensitivity of Al–Zn–Mg(Cu) 7XXX series alloys 5.6 Possible synergy between anodic dissolution and hydrogen embrittlement 5.7 Rate of crack propagation under stress corrosion 5.8 Stress corrosion parameters 5.9 Prevention of stress corrosion 5.10 Measurement of stress corrosion sensitivity 5.10.1 Mode of application of stress 5.10.2 Evaluation criteria 5.10.3 Laboratory tests 5.10.4 Tests under natural atmosphere 5.10.5 Slow strain rate testing (SSRT) 5.10.6 Acoustic emission 5.11 Stress corrosion sensitivity of aluminium alloys References C.6 - Corrosion fatigue 6.1 Corrosion fatigue and stress corrosion cracking 6.2 Mechanism of corrosion fatigue 6.3 Role of corrosion products 6.4 Parameters of corrosion fatigue 6.4.1 Pre-exposure 6.4.2 Frequency of fatigue loading 6.4.3 Rate of deformation 6.4.4 The environment References C.7 - Filiform corrosion 7.1 Historical background 7.2 Characteristics of filiform corrosion 7.3 Mechanism of filiform corrosion 7.4 Parameters of filiform corrosion 7.4.1 Alloy compositions 7.4.1.1 Extruded products 7.4.1.2 Semi-finished rolled products 7.4.1.2.1 Influence of iron 7.4.1.2.2 Influence of silicon 7.4.1.2.3 Influence of magnesium 7.4.1.2.4 Influence of manganese 7.4.1.2.5 Influence of copper 7.4.2 Influence of heat treatments 7.4.3 Relative humidity 7.4.4 Temperature 7.4.5 The condition of the surface layer 7.4.6 Scalping of billets and ingots 7.4.7 Grinding 7.4.8 Contact with rubber 7.4.9 Pickling 7.4.10 Pre-treatments 7.5 Methods of characterization of filiform corrosion 7.6 Prevention of filiform corrosion References C.8 - Crevice corrosion 8.1 Mechanism of crevice corrosion 8.1.1 Limited electrolyte volume corrosion 8.1.2 Humidification and drying rate 8.1.3 Key reactions 8.1.4 Mechanical consequences 8.2 Crevice corrosion theories 8.3 Sensitivity of aluminium to crevice corrosion References C.9 - Fretting corrosion 9.1 Mechanism of fretting corrosion 9.2 Parameters of fretting corrosion 9.3 Resistance of aluminium alloys to fretting corrosion References C.10 - Water line corrosion 10.1 Corrosion by differential aeration 10.2 Water line aluminium corrosion Reference C.11 - Erosion and cavitation 11.1 Erosion 11.1.1 Nature of damage 11.1.2 Resistance of aluminium alloys to erosion 11.2 Cavitation 11.2.1 Mechanism of cavitation 11.2.2 Consequences of cavitation 11.2.3 Cavitation prediction References C.12 - Microbiologically influenced corrosion 12.1 The nutritional mode of bacteria 12.2 Role of metabolites in the microbiologically influenced corrosion of aluminium 12.3 Mechanism of aluminium corrosion in the presence of microorganisms 12.4 Formation and role of biofilms (biofouling) 12.4.1 Formation of biofilms 12.4.2 Role of biofilms on corrosion resistance 12.5 Resistance of aluminium in the presence of microorganisms References C.13 - Galvanic corrosion 13.1 Aluminium and galvanic corrosion 13.2 Definition of galvanic corrosion 13.3 Principles of a battery cell 13.4 Morphology of galvanic corrosion 13.5 Predicting galvanic corrosion 13.5.1 Measurement of open circuit potential (OCP) 13.5.2 Current measurements 13.5.3 Salt spray or immersion tests 13.5.4 Preparation of assemblies and tests in natural atmosphere 13.6 Conditions of galvanic corrosion 13.6.1 Different types of metals 13.6.2 Presence of an electrolyte 13.6.3 Electrical continuity between the metals 13.7 Galvanic corrosion parameters 13.7.1 Nature of the electrolyte 13.7.2 Polarization phenomena 13.7.3 The surface ratio between the two metals 13.7.4 Distance from the contact zone 13.7.5 Temperature 13.8 Practical aspects of galvanic corrosion 13.8.1 Submerged (or embedded) structures 13.8.2 Emerged structures 13.9 The influence of the type of metal in contact with aluminium in emerged assemblies 13.9.1 Unalloyed steel 13.9.2 Galvanized or cadmium-plated steel 13.9.3 Stainless steel 13.9.4 Copper and copper alloys 13.9.5 Titanium 13.9.6 Mercury 13.9.7 Other metals 13.10 Contact between aluminium alloys 13.11 Contact with graphite and carbon fibre-based composites 13.11.1 Contact with graphite 13.11.2 Contact with impregnated graphite 13.11.3 Carbon fibre-based composites 13.12 Prevention of galvanic corrosion 13.12.1 Insulation of the two metals present 13.12.2 Use of ‘transition joints’ 13.12.3 Use of aluminium bolts 13.12.4 Painting of the surfaces in contact 13.13 Neutralization of galvanic coupling 13.13.1 Remark References C.14 - Corrosion products 14.1 Elimination of corrosion products 14.2 Analysis of corrosion products References Part D D.1 - Parameters governing in-service corrosion resistance 1.1 Factors related to the environment 1.1.1 Nature of the environment 1.1.2 Concentration 1.1.3 Oxygen content 1.1.4 pH values 1.1.5 Temperature 1.1.6 Pressure 1.2 Alloy composition 1.3 Forming and transformation routes 1.4 Twin roll casting 1.4.1 Mode of operation 1.4.2 Microstructure of twin roll cast strip 1.4.3 Segregation 1.4.4 Internal defects 1.4.5 Corrosion resistance 1.5 Heat treatments 1.5.1 Quench rate 1.5.2 Ageing 1.5.3 Artificial ageing of copper-containing 7XXX alloys 1.5.4 Paint baking 1.6 Grain size 1.7 Strain hardening 1.8 Surface condition 1.8.1 Influence of surface condition on electrochemical tests 1.8.2 Influence of surface condition on service life 1.8.3 Pickling 1.9 Aluminium welding techniques 1.10 Electric arc welding 1.10.1 The heat-affected zone 1.10.2 Hydrogen pickup, welding defects and repair 1.11 Laser beam welding 1.12 Friction stir welding 1.12.1 Principle of friction stir welding 1.12.2 Microstructure of friction stir-welded joints 1.12.3 Influence of friction stir welding parameters 1.12.4 Corrosion resistance of FSW welds 1.12.4.1 5XXX series alloys (AA5083, AA5059, AA5456, etc.) 1.12.4.2 High-strength aluminium 2XXX and 7XXX alloys 1.12.5 Mixed assemblies 1.12.6 Post-weld treatments 1.12.6.1 Laser surface melting 1.12.6.2 Cryogenic cooling with CO2 1.12.6.3 Post-weld artificial ageing 1.13 Bonding 1.14 Contact with other metals and materials 1.15 Mechanical loads 1.16 Design measures 1.17 Storage and transport 1.18 Maintenance References Part E E.1 - Corrosion testing 1.1 Objectives of corrosion testing methods 1.2 Applications of corrosion test methods 1.2.1 Acceptance testing 1.2.2 Characterization of new products 1.2.3 Corrosion resistance in a given environment 1.2.4 Simulation of service conditions 1.2.5 Assessment of compatibility 1.3 The need for specific corrosion test methods 1.3.1 Metal-specific tests 1.3.2 Specific to a particular type of corrosion 1.4 Representativeness of corrosion test methods 1.4.1 Time-accelerated tests 1.4.2 Discriminative tests 1.4.3 Comparative tests 1.4.4 Calibrated tests 1.4.5 Reproducible tests 1.5 Types of tests 1.5.1 Laboratory testing 1.5.2 Testing at outdoor exposure stations 1.5.3 Prototype evaluation with test loops 1.6 Expression of results 1.6.1 Qualitative results 1.6.2 Quantitative results 1.7 Electrochemical test methods 1.7.1 Polarization curves 1.7.2 Tafel lines8 1.7.3 Polarization resistance 1.7.4 Electrochemical microcapillary cells 1.7.5 Limitations of electrochemical methods 1.8 Standardization of corrosion tests References Part F F.1 - Protection of aluminium 1.1 Boehmite coatings 1.1.1 Boehmite formation reactions 1.1.2 Hydrothermal formation 1.1.3 Boehmite formation with water vapour 1.1.4 Influence of alloy type 1.1.5 Influence of water composition 1.1.6 Treatments with additivated water 1.1.7 Industrial application of boehmite coatings 1.2 Chemical conversion treatments 1.2.1 Chromate conversion coatings 1.2.1.1 Formation 1.2.1.2 Properties 1.2.1.3 Mode of action 1.2.1.4 Self-healing capacity 1.2.1.5 Influence of copper 1.2.1.6 Effect of pH 1.2.2 Trivalent chromium conversion 1.2.3 Phosphatation 1.2.4 Cerium conversion coatings 1.2.4.1 Formation 1.2.4.2 Activation of cerium coatings 1.2.4.3 Selection of cerium salt 1.2.4.4 Mode of action 1.2.4.5 Ce(III) and Ce(IV) 1.2.4.6 Efficiency 1.2.5 Titanium–zirconium conversion coatings 1.2.5.1 Formation 1.2.5.2 Structure of the conversion layer 1.2.5.3 Bath parameters 1.2.6 Molybdate conversion coatings 1.2.7 Vanadate conversion coatings 1.3 Anodization 1.3.1 Sulphuric acid anodizing 1.3.1.1 Influence of pH of the environment 1.3.1.2 Weathering 1.3.2 Chromic acid anodizing 1.3.3 Hard anodizing 1.3.4 Phosphoric acid anodizing 1.3.5 Summary of the commonly used anodization treatments 1.4 Sealing of anodic layers 1.4.1 Influence of pH and water quality 1.4.2 Influence of alloy composition and microstructure 1.4.3 Influence of copper 1.4.4 Influence of Al3Fe intermetallics 1.5 Micro-arc oxidation 1.6 Sol–gel coatings 1.6.1 The sol–gel process 1.6.2 Precursors 1.6.3 Bonding 1.6.3.1 Sol deposition 1.6.4 Protection against corrosion 1.7 Silane coatings 1.7.1 Formation of silane films on aluminium 1.7.2 Efficiency of silanes 1.7.3 Ormosil coatings 1.8 Polyaniline coatings 1.8.1 Coating on aluminium 1.8.2 Efficiency 1.9 Cladding aluminium alloys 1.10 Plating on aluminium 1.11 Organic coatings 1.12 Corrosion inhibitors 1.12.1 History of inhibitor use 1.12.2 Criteria for the choice of inhibitors 1.12.3 Electrochemical classification of inhibitors 1.12.4 Physico-chemical classification 1.12.5 Mechanism of inhibition 1.12.6 Efficiency of inhibitors 1.12.7 Inhibitor classes 1.12.7.1 Inorganic molecules 1.12.7.2 Silicates 1.12.7.3 Molybdates and tungstates 1.12.7.4 Phosphates 1.12.7.5 Vanadates 1.12.7.6 Carboxylates 1.12.7.7 Nitrates and nitrites 1.12.7.8 Organic molecules 1.12.8 Use of inhibitors 1.12.9 Examples of inhibitors for aluminium 1.12.10 Naturally occurring inhibitors 1.13 Cathodic protection of aluminium 1.13.1 Difficulties of cathodic protection of aluminium 1.13.2 Cathodic corrosion of aluminium 1.13.3 Secondary reactions in seawater 1.13.4 Implementation of cathodic protection of aluminium 1.13.5 Applications of aluminium cathodic protection References Part G G.1 - 1XXX Series 1.1 Main 1XXX series grades 1.2 The corrosion resistance of high-purity grades (AA1199) 1.3 Sensitivity to pitting corrosion 1.3.1 Influence of impurities 1.3.2 Influence of copper 1.3.3 Anions in solution 1.3.4 Surface state 1.4 Intergranular corrosion of 1XXX alloy grades References G.2 - 2XXX series alloys 2.1 Historical background 2.2 Main 2XXX series alloys 2.2.1 Quenched and naturally aged tempers T4 and T451 2.2.2 Artificially aged tempers T6 (T651) and T8 (T851) 2.3 Corrosion sensitivity of 2XXX series alloys 2.3.1 Pitting corrosion 2.3.2 Intergranular corrosion 2.3.2.1 Influence of stress on intergranular corrosion 2.3.2.2 Consequence of intergranular corrosion 2.3.3 Exfoliation corrosion 2.4 Influence of heat treatments 2.4.1 Holding time between solutionizing and quenching 2.4.2 Influence of quench rate 2.4.3 Influence of ageing conditions 2.5 Clad AA2024 ‘Alclad’ References G.3 - 3XXX series alloys 3.1 Properties of aluminium–manganese alloys 3.2 Main 3XXX series alloys 3.3 Corrosion resistance of 3XXX series alloys References G.4 - 5XXX series alloys 4.1 Properties of the 5XXX series alloys 4.2 Main 5XXX series alloys 4.3 Influence of composition 4.3.1 Influence of chromium and manganese 4.3.2 Influence of zinc 4.3.3 Influence of scandium 4.4 Influence of the β-phase Al3Mg2 phase on the corrosion resistance of 5XXX alloys 4.4.1 Precipitation of the β-phase at grain boundaries 4.4.2 Conditions of precipitation of the β-phase 4.4.2.1 Magnesium concentration 4.4.2.2 Influence of temperature 4.4.2.3 Influence of strain hardening 4.5 Corrosion susceptibility of 5XXX alloys 4.5.1 Localized corrosion 4.5.2 Intergranular corrosion 4.5.3 Stress corrosion cracking 4.5.4 Exfoliation corrosion 4.6 Stabilizing heat treatments References G.5 - 6XXX series alloys 5.1 Properties of 6XXX series alloys 5.2 Main 6XXX series alloys 5.3 Influence of composition 5.3.1 Influence of silicon 5.3.2 Influence of iron 5.3.3 Influence of magnesium 5.3.4 Influence of Mg2Si content 5.3.5 Influence of copper 5.3.6 Influence of chromium 5.4 Intergranular corrosion susceptibility of 6XXX alloys without copper 5.5 Intergranular corrosion susceptibility of copper-containing 6XXX alloys 5.5.1 Presence of the Q-phase 5.5.2 Quench rate 5.5.3 Ageing conditions 5.6 Sensitivity to pitting References G.6 - 7XXX series without copper 6.1 Main 7XXX series alloys without copper 6.2 Influence of composition 6.3 Influence of heat treatments 6.4 Corrosion resistance 6.4.1 Susceptibility to exfoliation corrosion 6.4.2 Stress corrosion susceptibility 6.4.3 Susceptibility to water vapour 6.5 Influence of welding on the microstructure of AA7020 6.5.1 The heat-affected zone 6.5.2 The white zone References G.7 - 7XXX series with copper 7.1 Main 7XXX series alloys with copper 7.2 Influence of alloy composition 7.2.1 Influence of copper 7.2.2 Influence of scandium 7.3 Corrosion susceptibility of 7XXX alloys with added copper 7.3.1 Susceptibility to exfoliation corrosion 7.3.2 Stress corrosion cracking susceptibility 7.4 Influence of humidity and water vapour 7.5 Influence of heat treatments 7.5.1 Solution heat treatment 7.5.2 Quench rate 7.5.3 Ageing References G.8 - Aluminium–lithium alloys 8.1 Main aluminium–lithium alloys 8.2 Corrosion resistance of aluminium–lithium alloys 8.3 Pitting corrosion 8.4 Intergranular corrosion 8.4.1 Remark 8.5 Exfoliation corrosion 8.5.1 Remark 8.6 Stress corrosion cracking 8.6.1 Remark References G.9 - Aluminium casting alloys 9.1 Main aluminium casting alloys 9.2 Applications of aluminium casting alloys and corrosion resistance 9.3 Corrosion resistance of aluminium casting alloys 9.4 Parameters governing corrosion resistance of aluminium casting alloys 9.4.1 Metal source: primary or recycled metal 9.4.2 Casting mode 9.4.2.1 Remark 9.4.3 Metal quality 9.4.4 Modification of Al–Si alloys 9.4.5 Influence of copper 9.4.5.1 Aluminium–silicon alloys without copper 9.4.5.2 Aluminium–silicon–copper 9.4.5.3 Aluminium–silicon–magnesium 9.4.6 Influence of iron 9.4.7 Influence of other elements 9.5 Stress corrosion cracking resistance 9.6 Filiform corrosion resistance References Part H H.1 - Atmospheric corrosion 1.1 Historical background 1.2 Knowledge base of aluminium weathering 1.3 The nature of atmospheric corrosion References H.2 - The parameters of atmospheric corrosion 2.1 Relative humidity 2.2 Rain 2.3 Fog 2.4 Condensation 2.5 Temperature 2.6 Gaseous pollutants 2.6.1 Sulphur dioxide 2.6.2 Carbon dioxide 2.6.3 Hydrogen sulphide 2.6.4 Ammonia 2.6.5 Nitrogen oxides 2.6.6 Volatile organic compounds 2.6.7 Chlorides 2.7 Dust 2.8 Corrosion products 2.9 Alternating periods of dampness and dryness References H.3 - Types of atmospheres 3.1 The classic typology 3.2 Standardized typology 3.3 The predictive approach 3.4 Wire-on-bolt test – characterization of the aggressiveness of the atmosphere References H.4 - The various forms of atmospheric corrosion 4.1 Pitting corrosion 4.2 Galvanic corrosion 4.3 Filiform corrosion 4.4 Tarnishing due to water staining 4.5 Water staining due to storage of semi-products 4.5.1 Nature of the alteration of surface appearance 4.5.2 Influence of condensation 4.5.3 Storage conditions References H.5 - Resistance of aluminium to atmospheric corrosion 5.1 The dome of San Gioacchino Church, a 120-year-old experience 5.2 Atmospheric corrosion of aluminium over time 5.3 Weathering resistance of wrought alloys 5.3.1 Weight loss 5.3.2 Changes in mechanical characteristics 5.3.3 Measurement of pitting depth 5.4 Decrease in the weathering rate of aluminium 5.5 Long-term weathering resistance of wrought alloys 5.6 Long-term weathering of casting alloys 5.7 Weathering resistance of anodized semi-products 5.7.1 Nature of the alloy 5.7.2 Anodizing conditions 5.7.3 Film thickness 5.7.4 Maintenance References Part I I.1 - Corrosion in water 1.1 The prediction of corrosion resistance in water is uncertain 1.2 The influence of water quality References I.2 - Freshwater 2.1 The physical chemistry of water 2.2 The analysis of water 2.2.1 Inorganic salts 2.2.2 Dissolved gases 2.2.3 Matter in suspension 2.2.4 Organic matter, soluble or in suspension 2.2.5 pH 2.2.6 Electrical conductivity 2.3 The various forms of aluminium corrosion in natural waters 2.3.1 Pitting corrosion 2.3.2 Galvanic corrosion 2.3.3 Other forms of corrosion 2.4 Blackening of aluminium 2.5 The effect of water on aluminium 2.5.1 Influence of chloride concentration 2.5.2 The influence of sulphate concentration 2.5.3 The influence of calcium concentration 2.5.4 The influence of carbonate concentration 2.5.5 The influence of freshwater treatment 2.5.6 Metals dissolved in water 2.6 The influence of temperature 2.6.1 Reactions of natural oxide films with water 2.6.2 Temperature and forms of corrosion 2.6.3 Influence of aluminium composition 2.6.4 Temperature limits 2.7 The influence of oxygen dissolved in water 2.8 The influence of pH 2.9 The influence of water movement and flow rate 2.10 Predicting the resistance of aluminium in freshwater 2.11 Examples for the use of aluminium in contact with freshwater 2.11.1 Irrigation and conveyance of water 2.11.2 Central heating 2.11.3 Condensing boilers 2.11.4 Various types of equipment 2.12 Purified water References I.3 - Seawater 3.1 Historical background 3.2 Characteristics of seawater 3.2.1 Salinity 3.2.2 Dissolved oxygen 3.2.3 Temperature 3.2.4 pH 3.2.5 Flow rate 3.2.6 Biological activity 3.3 Corrosion resistance of aluminium in the marine environment 3.3.1 Exposure to marine atmospheres 3.3.2 Immersion in surface seawater 3.3.3 Immersion in deep seawater 3.3.4 Immersion on the seafloor 3.4 Forms of corrosion in seawater 3.4.1 Pitting corrosion 3.4.2 Galvanic corrosion 3.5 Marine applications of aluminium 3.5.1 Shipbuilding 3.5.2 Coastal equipment 3.5.3 Desalinization of seawater 3.5.4 Ocean thermal energy conversion 3.6 Tests in artificial seawater References I.4 - Brackish waters and wastewater 4.1 Brackish waters 4.2 Wastewater References Part J J.1 - Oxides and peroxides 1.1 Oxygen 1.2 Ozone 1.3 Metal oxides 1.4 Oxides of copper, silver, mercury and lead 1.5 Carbon monoxide and carbon dioxide 1.6 Sulphur dioxide 1.7 Sulphurous acid 1.8 Sulphuric anhydride 1.9 Nitrogen oxides 1.10 Peroxides 1.10.1 Hydrogen peroxide 1.10.2 Alkali peroxides 1.11 Oxychlorides References J.2 - Hydrogen, nitrogen and noble gases 2.1 Hydrogen 2.2 Nitrogen 2.3 Noble gases: argon, helium, krypton, neon and xenon Reference J.3 - Metalloids and halides 3.1 Phosphorus, arsenic and antimony 3.2 Carbon 3.2.1 Carbon and graphite 3.2.2 Calcium carbide 3.3 Silicon and boron 3.4 Sulphur 3.5 Sulphides 3.5.1 Hydrogen sulphide 3.5.2 Carbon disulphide 3.5.3 Sulphur hexafluoride 3.5.4 Other sulphides 3.6 Fluorine 3.7 Fluorinated derivatives 3.8 Chlorine 3.9 Chlorinated derivatives 3.10 Bromine 3.11 Iodine 3.12 Halogen derivatives References J.4 - Inorganic bases 4.1 Sodium hydroxide 4.2 Potassium hydroxide 4.3 Lithium hydroxide 4.4 Calcium hydroxide 4.5 Barium hydroxide 4.6 Ammonia 4.7 Ammonium hydroxide 4.8 Hydrazine 4.9 Urea References J.5 - Inorganic acids 5.1 Hydrochloric acid 5.2 Hydrofluoric acid 5.3 Hydrobromic acid and hydroiodic acid 5.4 Hydrocyanic acid 5.5 Perchloric acid 5.6 Chloric acid 5.7 Hypochloric acid 5.8 Sulphuric acid 5.9 Sulphamic acid 5.10 Fluorosulphonic acid and chlorosulphonic acid 5.11 Hyposelenic acid and selenic acid 5.12 Nitric acid 5.12.1 Influence of concentration 5.12.2 Influence of temperature 5.12.3 Influence of the duration of contact 5.12.4 Influence of crevice corrosion 5.12.5 Galvanic corrosion 5.12.6 Addition of hydrofluoric acid to fuming nitric acid 5.12.7 Influence of dinitrogen tetroxide 5.12.8 Nitrating acid mixtures 5.12.9 Use of aluminium alloys in nitric media 5.13 Phosphoric acid 5.14 Fluorophosphoric acids 5.15 Boric acid 5.16 Chromic acid References J.6 - Inorganic salts 6.1 General aspects 6.1.1 Types of salts 6.1.2 The influence of water 6.1.2.1 Remark 6.2 Fluorides 6.2.1 Uranium hexafluoride 6.2.2 Fluorosilicates 6.2.3 Fluoroborates 6.3 Chlorides 6.3.1 Sodium chloride 6.3.2 Potassium chloride 6.3.3 Calcium chloride 6.3.4 Other chlorides 6.4 Chlorates and perchlorates 6.5 Hypochlorites 6.6 Bromides and iodides 6.7 Sulphates 6.7.1 Ammonium sulphate, sodium sulphate and potassium sulphate 6.7.2 Beryllium sulphate, magnesium sulphate,calcium sulphate, barium sulphate and cadmium sulphate 6.7.3 Aluminium sulphate 6.7.4 Zinc sulphate 6.7.5 Copper sulphate 6.7.6 Other sulphates 6.7.7 Alums 6.8 Sulphites and hydrogen sulphites 6.9 Sulphides 6.10 Persulphates 6.11 Nitrates 6.11.1 Ammonium nitrate, potassium nitrate and sodium nitrate 6.11.2 Aluminium nitrate 6.11.3 Other nitrates 6.12 Nitrites 6.13 Phosphates 6.14 Arsenates and arsenites 6.15 Carbonates 6.15.1 Ammonium carbonate 6.15.2 Potassium carbonate and sodium carbonate 6.15.3 Other carbonates 6.16 Silicates and metasilicates 6.17 Borates, perborates and tetraborates 6.18 Cyanides, cyanates and thiocyanates 6.18.1 Cyanides 6.18.2 Thiocyanates (or sulphocyanates) 6.18.3 Ferrocyanides 6.19 Chromates and dichromates 6.20 Permanganates 6.21 Carbamates and sulphamates References Part K K.1 - Hydrocarbons 1.1 Alkanes 1.2 Alkenes 1.3 Alkynes 1.4 Arenes or aromatic hydrocarbons 1.5 Terphenyls 1.6 Cyclic, non-benzenic hydrocarbons 1.7 Engine fuels 1.7.1 Conventional fuels 1.7.2 Biofuels 1.8 Petroleum industry 1.9 Drilling muds References K.2 - Halogen derivatives 2.1 Reactivity towards aluminium 2.1.1 Nature of the halide 2.1.2 Structure of the molecule 2.1.3 Presence of humidity 2.1.4 Temperature 2.2 Derivatives of acyclic hydrocarbons 2.2.1 Chlorinated methane derivatives 2.2.1.1 Methyl chloride 2.2.1.2 Methylene chloride 2.2.1.3 Chloroform 2.2.1.4 Carbon tetrachloride 2.2.2 Chlorinated ethane derivatives 2.2.3 Chlorinated ethylene derivatives 2.2.4 Other chlorinated ethylene derivatives 2.2.5 Other chlorinated derivatives of acyclic hydrocarbons 2.2.6 Bromine derivatives 2.2.7 Iodine derivatives 2.2.8 Fluorine derivatives 2.3 Derivatives of aromatic hydrocarbons 2.4 Halogen derivatives of acids and phenols 2.4.1 Aryl halides 2.4.2 Halides of phenols 2.4.3 Other halides References K.3 - Alcohols, ethers, thiols and phenols 3.1 The action of boiling alcohols and dehydrated phenols on aluminium 3.2 Methyl alcohol 3.3 Ethyl alcohol 3.4 Higher alcohols 3.5 Acyclic unsaturated alcohols 3.6 Aromatic alcohols 3.7 Other alcohols 3.8 Polyalcohols 3.8.1 Glycols 3.8.2 Glycerine 3.9 Ethers 3.9.1 Acyclic ethers 3.9.2 Vinyl ethers and cellulose ethers 3.9.3 Glycol ethers 3.9.4 Aromatic ethers 3.10 Thiols and their derivatives 3.11 Phenols 3.11.1 Phenol 3.11.2 Other common phenols References K.4 - Amines 4.1 Acyclic amines 4.2 Alcohol amines 4.3 Aromatic amines 4.4 Derivatives of aromatic amines 4.5 Aminophenols 4.6 Amino acids References K.5.- Aldehydes and ketones 5.1 Aldehydes 5.1.1 Formaldehyde 5.1.2 Other acyclic aldehydes 5.1.3 Cyclic aldehydes 5.1.4 Aromatic aldehydes 5.2 Ketones 5.2.1 Aliphatic ketones 5.2.2 Cyclic ketones 5.2.3 Aromatic ketones References K.6 - Carboxylic acids and their derivatives 6.1 Acyclic carboxylic acids 6.1.1 Saturated carboxylic acids 6.1.1.1 Formic acid 6.1.1.2 Acetic acid 6.1.1.3 Propionic acid 6.1.1.4 Butyric acid and isobutyric acid 6.1.2 Fatty acids 6.1.3 Unsaturated carboxylic acids 6.1.4 Alpha hydroxy acids 6.1.5 Dicarboxylic acids 6.1.6 Unsaturated dicarboxylic acids 6.1.7 Polycarboxylic acids 6.1.8 Aromatic acids 6.1.9 Various acids 6.2 Carboxylic acid anhydrides 6.2.1 Acetic anhydride 6.2.2 Propionic anhydride 6.2.3 Butyric anhydride 6.2.4 Other anhydrides 6.3 Salts of organic acids 6.3.1 Alkaline salts 6.3.2 Salts of heavy metals 6.3.3 Formates 6.3.4 Acetates 6.3.5 Propionates 6.3.6 Salts of fatty acids 6.3.7 Lactates and oxalates 6.3.8 Benzoates and naphthenates 6.3.9 Sodium trichloroacetate 6.3.10 Tetraethyl lead 6.4 Esters 6.4.1 Formates 6.4.2 Acetates 6.4.3 Propionates 6.4.4 Butyrates 6.4.5 Esters of fatty acids 6.4.6 Other esters 6.4.7 Cellulose esters 6.4.8 Aromatic esters 6.4.9 Waxes 6.4.10 Fat 6.5 Amides 6.6 Nitriles and nitrous derivatives References K.7 - Other organic products 7.1 Alkaloids and heterocyclic compounds 7.2 Glucides Reference Part L L.1 - Corrosion in Soil 1.1 Types of soil 1.1.1 Constituents of soil 1.1.2 Physical chemistry of soil 1.2 The influence of the nature of soil on the corrosion behaviour of aluminium 1.3 Form of aluminium corrosion in soils 1.4 Aluminium corrosion resistance in soils 1.5 Protection against corrosion in soil References L.2 - Effect of stray currents and alternating currents 2.1 Stray currents 2.2 Alternating currents References L.3 - Fertilizers 3.1 Fertilizers 3.1.1 Solid fertilizers 3.1.2 Liquid fertilizers 3.1.3 Aluminium applications 3.2 Plant-care products References L.4 - Construction materials 4.1 The effect of concrete 4.1.1 Influence of chlorides 4.1.2 Contact with steel 4.2 The action of stray currents 4.3 The effect of plaster 4.4 The effect of wood 4.5 The effect of polymers References L.5 - Food industry 5.1 Aluminium and health 5.1.1 Uptake of aluminium 5.1.2 The harmlessness of aluminium 5.2 Food compatibility of aluminium: European standardization 5.2.1 Unalloyed aluminium 5.2.2 Alloyed aluminium 5.3 Applications of aluminium in contact with foodstuffs 5.4 The resistance of aluminium in contact with foodstuffs References L.6 - Cleaning of aluminium 6.1 Cleaning of metallic surfaces 6.2 The choice of cleaning products 6.3 Compatibility with aluminium 6.4 Cleaning materials used with food 6.5 Cleaning anodized surfaces 6.6 Sand blasting References L.7 - Behaviour in fire 7.1 Fire resistance 7.1.1 Linear expansion coefficient, thermal conductivity and mass thermal capacity 7.1.2 Young's modulus and yield strength 7.2 Reaction to fire 7.3 The classification of aluminium alloys References Part M M.1 - Products that may be dangerous in contact with aluminium Index A B C D E F G H I K L M N O P Q R S T U V W X Y Z Back Cover