دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Brett Koonce
سری:
ISBN (شابک) : 9781484261675, 9781484261682
ناشر:
سال نشر: 2021
تعداد صفحات: 254
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب Convolutional Neural Networks with Swift for Tensorflow به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبکه های عصبی کانولوشن با سوئیفت برای تنسورفلو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Table of Contents About the Author About the Technical Reviewer Introduction How this book is organized Chapter 1: MNIST: 1D Neural Network Dataset overview Dataset handler Code: Multilayer perceptron + MNIST Results Demo breakdown (high level) Imports (1) Model breakdown (2) Global variables (3) Training loop: Updates (4) Training loop: Accuracy (5) Demo breakdown (low level) Fully connected neural network layers How the optimizer works Optimizers + neural networks Swift for Tensorflow Side quests Recap Chapter 2: MNIST: 2D Neural Network Convolutions 3x3 additive blur example 3x3 Gaussian blur example Combined 3x3 convolutions – Sobel filter example 3x3 striding Padding Maxpool 2D MNIST model Code Side quest Recap Chapter 3: CIFAR: 2D Neural Network with Blocks CIFAR dataset Color Breakdown Code Results Side quest Recap Chapter 4: VGG Network Background: ImageNet Getting ImageNet Imagenette dataset Data augmentation VGG Code Results Memory usage Model refactoring VGG16 with subblocks Side quests Recap Chapter 5: ResNet 34 Skip connections Noise Batch normalization Code Results Side quest Recap Chapter 6: ResNet 50 Bottleneck blocks Code Results Side Quest: ImageNet Recap Chapter 7: SqueezeNet SqueezeNet Fire modules Deep compression Model pruning Model quantization Size metric Difference between SqueezeNet 1.0 and 1.1 Code Training loop Results Side quest Recap Chapter 8: MobileNet v1 MobileNet (v1) Spatial separable convolutions Depthwise convolutions Pointwise convolutions ReLU 6 Example of the reduction in MACs with this approach Code Results Recap Chapter 9: MobileNet v2 Inverted residual blocks Inverted skip connections Linear bottleneck layers Code Results Recap Chapter 10: EfficientNet Swish SE (Squeeze + Excitation) block Code Results EfficientNet variants EfficientNet [B1-8] RandAugment Noisy Student EfficientDet Recap Chapter 11: MobileNetV3 Hard swish and hard sigmoid Remove the Squeeze and Excitation (SE) block logic for half the network Custom head Hyperparameters Performance Code Results EfficientNet-EdgeTPU Recap Chapter 12: Bag of Tricks Bag of tricks What to learn from this Reading papers Stay behind the curve How I read papers Recap Chapter 13: MNIST Revisited Next steps Pain points TPU case study Tensorflow 1 + Pytorch Enter functional programming Swift + TPU demo Results Recap Chapter 14: You Are Here A (short and opinionated) history of computing History of GPUs Cloud computing Crossing the chasm Computer vision Direct applications Indirect applications Natural language processing Reinforcement learning and GANs Simulations in general To infinity and beyond Why Swift Why LLVM Why MLIR Why ML is the most important field Why now Why you Appendix A: Cloud Setup Outline Google Cloud with CPU instances How to sign up for Google Cloud Creating your first few instances Google Cloud with preconfigured GPU instance Google Cloud nits Cattle, not pets Basic Google Cloud nomenclature * Machine types * Buckets * Billing Cleaning up Recap Appendix B: Hardware Prerequisites, Software Installation Guidelines, and Unix Quickstart Hardware Don’t go alone! GPU GPUs to buy Multiple GPUs CPU Motherboard PSU Cooling RAM SSD Recommendations Long term Some real-world usage examples Hardware recap Installing Ubuntu General prep OS install prep Download Ubuntu + flash to USB key OS install Extra screen Reboot Doing a sanity check of your new server Ubuntu recap Installing swift for tensorflow Installing graphics card drivers and swift for tensorflow CUDA 10.2 install process Installing cudnn Installing swift for tensorflow using prebuilt packages Download swift Python Verify you\'re using a GPU Autoencoder demo Reinforcement learning demo Swift for Tensorflow recap Installing s4tf from scratch There be dragons here How to build swift for tensorflow from scratch Prerequisites Installing cmake Packages we need Bazel Fetch swift for tensorflow sources What a checkout will look like (different hashes) Python 2 install + packages needed Build swift for tensorflow from source with GPU support Running our swift binary Reset your build artifacts Installing s4tf from scratch recap Client setup process + Unix quickstart Setting up your client computer/crash course in Unix General config Configuring your network for remote access Setting up a VPN (ideal but more complicated) Setting up port forwarding Crash course in tmux Appendix C: Additional Resources Python --> swift transition guide Python 3 REPL Python --> Swift bridge Python --> C bridge Python libraries Self-study guide Things to study Python Swift iOS/Android Tensorflow Pytorch fast.ai Cloud computing TPU Unix Git + Unix + etc Other machine learning compiler–related projects System monitoring/utilities Check standard system utilities Index