دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Arthur J. Stewart (editor), Michael P. Mueller (editor), Deborah J. Tippins (editor) سری: ISBN (شابک) : 3030251004, 9783030251000 ناشر: Springer سال نشر: 2020 تعداد صفحات: 314 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Converting STEM into STEAM Programs: Methods and Examples from and for Education (Environmental Discourses in Science Education, 5) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تبدیل STEM به برنامه های STEAM: روش ها و مثال هایی از آموزش و برای آموزش (گفتمان های زیست محیطی در آموزش علوم، 5) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به بررسی فشار و کشش عوامل مؤثر در تبدیل برنامههای آموزشی STEM (علم، فناوری، مهندسی و ریاضی) به STEAM (علم، فناوری، مهندسی، ریاضی) میپردازد. و هنر) برنامه های آموزشی. فصلهای این کتاب مثالها، نظریهها و پیشنهادات قابل تاملی را در مورد مزایا، روشها و چالشهای موجود در تبدیل STEM به STEAM در سطوحی از K12 تا برنامههای دانشگاه فارغالتحصیل ارائه میدهند. یک نیروی محرکه بزرگ برای تبدیل STEM به STEAM آگاهی در حال ظهور است که نیروی کار علمی در هنگام درگیر شدن با به اصطلاح «مشکلات شرورانه» - مجموعه پیچیده ای از مسائل نوظهور و چندوجهی مانند تغییرات آب و هوایی جهانی، آمادگی کمتری از آمادگی ایده آل پیدا می کند. بی عدالتی اجتماعی و بیماری های همه گیر پرداختن به این موضوعات مستلزم تخصص بین رشته ای و توانایی درج درک فنی و علمی به طور موثر در حوزه های برنامه ریزی و سیاست عمومی است.
مدلها و امکانات مختلف برای STEAM، بهعنوان مرحله بعدی انقلاب STEM، که در این کتاب ارائه شده است، باعث ارتقای تحقیقات و درک ما از STEAM به عنوان یک آیندهنگر میشود. رویکرد به آموزش.
گیلیان روهریگ، آموزش STEM، دانشگاه مینهسوتا، ایالات متحده
معلم ایده آل فرصت هایی را برای ادغام ایده ها از چندین رشته در هر درس می بیند. این کتاب پیشنهادهای ارزشمند بسیاری را در مورد چگونگی انجام این کار به طور عمدی و سیستماتیک ارائه می دهد
جرج دی بوئر، پروژه 2061 انجمن آمریکایی برای پیشرفت علم، ایالات متحده آمریکا
در چند سال گذشته، درخواستها برای گسترش آموزش STEM
افزایش یافته است، اما نگرانیها در مورد رویکردهای تکنوکراتیک
STEM نیز افزایش یافته است. این جلد جامعه را به چالش می کشد تا
دیدگاه های گسترده تری را در مورد STEM با تمرکز بر جایگاه
آموزش هنر در این جنبش در نظر بگیرند. فصلها دیدگاههای بسیار
مورد نیاز و جدیدی را در مورد ادغام (دوباره) هنر و علوم ارائه
میدهند
Troy Sadler، مدرسه آموزش، دانشگاه کارولینای شمالی، ایالات متحده آمریکا
This book examines the push and pull of factors contributing to and constraining conversion of STEM (science, technology, engineering and math) education programs into STEAM (science, technology, engineering, math and arts) education programs. The chapters in this book offer thought-provoking examples, theory, and suggestions about the advantages, methods and challenges involved in making STEM to STEAM conversions, at levels ranging from K12 through graduate university programs. A large driving force for STEM-to-STEAM conversions is the emerging awareness that the scientific workforce finds itself less than ideally prepared when engaging with so-called ‘wicked problems’ – the complex suite of emerging, multifaceted issues such as global climate change, social injustice, and pandemic diseases. Dealing with these issues requires cross-disciplinary expertise and the ability to insert technical and scientific understanding effectively into areas of public planning and policy.
The different models and possibilities for STEAM, as the next phase of the STEM revolution, laid out in this book will promote research and further our understanding of STEAM as a forward-thinking approach to education.
Gillian Roehrig, STEM Education, University of Minnesota, USA
The ideal teacher sees opportunities for integrating ideas from multiple disciplines into every lesson. This book offers many worthwhile suggestions on how to do that deliberately and systematically
George DeBoer, Project 2061 of the American Association for the Advancement of Science, USA
For the last several years, calls for expanding STEM
education have grown, but so too have concerns about
technocratic approaches to STEM. This volume challenges the
community to consider broader views on STEM by focusing on
the place of arts education within this movement. The
chapters offer much needed, new perspectives on the
(re)integration of the arts and
sciences
Troy Sadler, School of Education, University of North Carolina, USA
Converting STEM into STEAM Programs Prologue References Book Abstract Contents About the Editors From STEM to STEAM: How Can Educators Meet the Challenge? 1 Introduction 2 STEM to STEAM 3 Proving Some Causal Connections: Science via the Arts 4 Creative Thinking and Problem Solving 5 STEAM Instructional Framework 6 STEAM and Educational Reform References The Importance of Integrating the Arts into STEM Curriculum 1 STEM Education in the USA 1.1 Investing in STEM 2 STEAM: The What and Why 2.1 The Need for Creativity 2.2 Student Engagement 2.3 Arts Integration and Its Influence on Retention 3 Theory to Practice 3.1 Planning for Success 3.2 Major STEAM Initiatives 4 Conclusion References Purposeful Pursuits: Leveraging the Epistemic Practices of the Arts and Sciences 1 Introduction 2 Background and Rationale 2.1 Epistemic Practices in STEM 2.2 Epistemic Practices in the Arts 2.3 STEAM: Intersections Between the Arts and Sciences 3 A Framework for the Intersection of Epistemic Practices in the Arts and Sciences 3.1 Example 1 – STEAM-Rich Tinkering in a Weekly Afterschool Youth Program 3.2 Example 2 – STEAMY Science Engagement at a Music Festival 4 Conclusions References Investigating the Complexity of Developing STEAM Curricula for K-8 Students 1 Conceptualizing STEAM: How Do We Avoid Repeating the Past? 2 Positioning Our STEAM Work 3 Professional Development to Inform STEAM Unit Creation 4 A STEAM Education Conceptual Model 5 The Importance of Scenario-Based Teaching in STEAM Instruction: Examples from the Field 5.1 Example 1: Birds of Prey 6 Problem Scenario 7 State Standards 7.1 Science 7.2 English-Language Arts 7.3 Math 7.4 Visual Arts 7.5 Music 8 Daily Activities 8.1 Example 2: DNA STEAM Unit 9 Problem Scenario 9.1 Driving Question 9.2 Elements of STEAM 10 State Standards 11 Daily Activities 12 Discussion 13 Relevant, Problem-Based Scenarios 14 Transdisciplinary Teaching 15 Including the Arts and Humanities 16 Technology Integration 17 Challenges References We Need More (than) STEAM: Let’s Go for Life-Wide and Lifelong Education 1 Introduction 2 A Brief History of Curriculum Evolution 3 Hitting on Some Wicked Problems of Schooling 4 An Example of How to Address the Wicked Problem of Schooling 5 Learning While Doing Something Important References Using Project-Based Learning to Teach STEAM 1 Introduction 1.1 The Interrelationship of STEAM Subjects in Solving Complex Problems 2 Project-Based Learning 2.1 Experiential Learning 2.2 The Foxfire Experience (2002) 2.3 What Has Project-Based Learning Become Today? 3 Project Versus Problem-Based Learning 3.1 My Place, Your Place, Our Place 4 How PBLs Work in the Classroom 4.1 The Teachers’ Role 4.2 The Student’s Role 4.3 The PBL Classroom 4.4 Benefits of and Outcomes from PBLs in a STEAM Curriculum 5 Research Supporting the PBL Approach 6 How to Structure a PBL to Meet STEAM Objectives 6.1 Topic/Problem/Grade/Length 6.2 Topic Paragraph 6.3 Curriculum Standards 6.4 PBL (Learning) Objectives in the Context of STEAM 6.5 Guiding Questions 6.6 Product Specification 6.7 Resources 6.8 Student Assessment Rubrics 6.9 In Closing References How to Structure Project-Based Learning to Meet STEAM Objectives 1 Introduction 2 Topic/Problem/Grade/Time 3 Topic Paragraph 4 Curriculum Standards 5 PBL (Learning) Objectives in the Context of STEAM 6 Guiding Questions 7 Product Specification 8 Resources 9 Student Assessment Rubrics 9.1 Stick Bridge Product: Performance Rubric 9.2 What to Do Next 10 PBL Example for Middle School STEAM Curriculum 10.1 Assessment Rubrics References STEM School Websites Using PBL Enhancing STEAM Education Through Cultivating Students’ Savoring Capacity 1 Savoring and Creativity 2 Savoring and Creative Self-Efficacy 3 STEAM Educational Environment and Support for Creativity 4 Multiple-Mediation Effects of Savoring 4.1 Purpose 4.2 Study Design and Methods 4.2.1 Scope 4.2.2 Measures 4.2.3 Statistical analysis 4.3 Results 5 Moderated Mediatory Effects of Perceived School Support for Creativity 5.1 Purpose 5.2 Study Design and Methods 5.2.1 Scope 5.2.2 Measures 5.2.3 Statistical analysis 5.3 Results 6 Theory and Practical Implications References Science, Youth, and Integration: The Quest for Mindfulness Through Birding 1 Introduction References The Role of STEAM in a Sustainable World 1 Introduction 2 Sustainability, in Principle and Practice 3 A Sustainable World 4 STEAM Education for a Sustainable World 5 UC Berkeley Vertical Garden 6 Undocuversity 7 Looking Ahead References Transgressing the Disciplines Using Science as a Meeting Place: The Science, Art and Writing Initiative 1 The Origins of the SAW Initiative 2 Using SAW to Explore a Major Societal Challenge: Control of Infectious Diseases 2.1 The Images 2.2 The Projects 3 The Children’s Responses 3.1 Poetry 3.2 Artwork 3.3 What the Children Said 4 The Impact of SAW 4.1 What the Teachers Say 4.2 What the Scientists Say 4.3 Science as Inspiration for Experience Writers and Artists References Links to Scientific Images Illustrating Research on Control of Infectious Disease at the NRP Image Library Artistic Ways of Knowing: Thinking Like an Artist in the STEAM Classroom 1 Introduction 2 The Arts: An Overview and Rationale for the “A” in STEAM 3 STEAM Is Rising 3.1 Early Childhood: A Natural! 3.2 K-12 Schools and Programs 3.3 STEAM University Research 4 Artistic Ways of Knowing and STEAM 4.1 Perceptual Awareness and Discrimination 4.2 Metaperception 4.3 Creative Interpretation 4.4 Dynamic of Behavior and Performance/Product 4.5 Critiquing References Putting the STEAM in the River: Potential Transformative Roles of Science, Technology, Engineering, Arts, and Mathematics in School District Culture, Organization, Systems, and Learning Environments 1 Introduction 2 Using an Ethnographic Perspective in Order to Take an Inquiry Stance 3 A 5-Year Inquiry Process: A Case Study 3.1 Key Leader as Catalyst 3.2 Vision, Mission, and Goals Statements 3.3 Catalytic Patterns of Practice/Processes 3.4 Why STEAM in the Context of a Culture of Inquiry? 4 Conclusions References Emerging Scenarios to Enhance Creativity in Smart Cities Through STEAM Education and the Gradual Immersion Method 1 Introduction 1.1 Challenges for the Twenty-First-Century Citizens 2 Scenario 1: Competence-Driven Learning Through Makerspaces, Remote Robotics, and Interactive Museums 2.1 Makerspaces 2.1.1 Digital Fabrication Laboratories in Mexico 2.1.2 The EspaceLab of Quebec 2.1.3 The Project #SmartCityMaker 2.1.4 #R2T2 Remote Robotics 3 The Gradual Immersion Method for Enhancing Creativity and Collaboration 3.1 Applying GIM to “Creating Surreal Expressions” 3.2 Module I: Familiarization with Surrealist Works 3.3 Module II: Creating Surreal Expressions with Augmented Reality 3.4 Module III: Exhibition of Surrealist Expressions 3.5 Learnings from the Co-creative Experience 4 Scenario 2: GIM-Based Co-creative Proposal for Smart City Habitats 4.1 Module I: Familiarize Students with Smart City Concepts 4.1.1 Reflecting 4.1.2 Exploring 4.1.3 Linking 4.1.4 Reusing 4.1.5 Completing 4.2 Module II: Digital Creation of Habitat in the Smart City 4.3 Module III: Exhibition of Augmented Reality Creations for the Smart City 4.4 Expectations About Co-creation for Smart Cities Based on GIM References Applying Gradual Immersion Method to Chemistry: Identification of Chemical Bonds 1 Typical Issues on Teaching Chemistry 2 Augmented Reality and Educational Possibilities 3 The Gradual Immersion Method 3.1 Module I: Becoming Familiar with Chemical Bonds 3.2 Module II: Creating Contextualized Chemical Bonds 3.3 Module III: Displaying Chemical Bond Routes 4 Learnings from the Co-creative Experience 5 Creativity Competency 6 Collaboration Competency 7 Computational-Thinking Competency 8 Learning of Chemical Bonds 9 User Experience and Recommendations 10 Conclusions 11 Future Plans References From Conceptualization to Implementation: STEAM Education in Korea 1 Introduction 2 Overview and Specific Directions of STEAM in Korea 3 STEAM, Creative Design, and Problem-Based Learning 4 The Importance of the Arts in STEAM: “Emotional Touch” in Problem Solving 5 Theoretical Framework of STEAM in Korea 6 Previous Literature on STEAM in Korea 7 STEAM Addresses the Limitations of Problem-Based Learning 8 Promoting Female Students in STEM/STEAM 9 Effectiveness of STEAM 10 Concluding Remarks About STEAM in Korea References Emphasizing Transdisciplinary Prowess in the Evaluation of STEAM Programs 1 Introduction 2 Why Program Evaluation? 2.1 Evaluation Use 2.2 Program Development and Continuous Improvement 2.3 Program Effectiveness 3 Transdisciplinary Knowledge, Skills, and Processes 4 Evidence of Transdisciplinary Prowess 4.1 Communication 4.2 Collaboration 4.3 Critical Thinking 4.4 Creativity 5 In Conclusion 5.1 The Value-Added of Program Evaluation for STEM and STEAM Programs 5.2 Balanced Measurement of Disciplinary and Transdisciplinary Knowledge, Skills, and Processes 5.3 The Transdisciplinary Prowess of the Evaluator References STEM Education and the Theft of Futures of Our Youth: Some Questions and Challenges for Educators 1 Introduction 1.1 Question # 1: What Are the Challenges of STEM Education for All Within Contemporary Reform Efforts? 1.2 Question # 2: In What Ways Does STEM/STEAM Continue to Reify Traditional Gender Roles? 1.3 Question # 3: How Can We Conceptualize STEM/STEAM While Maintaining a Focus on Community, Local Knowledge, and a Connection to Place? 1.3.1 Critical Pedagogy 1.3.2 Transdisciplinary Instruction 1.3.3 Student Ownership 1.4 Question # 4: What Role Should Ethics and Morals Have in STEM Education? The Missing “E” and “M” Pieces in STEM Education 1.5 Question # 5: What Is Neoliberalism and Why Is It Relevant to STEM/STEAM Education? 1.5.1 What Is STEAM Art? 1.5.2 STEAM 1.5.3 Some Concluding Thoughts References Correction to: Converting STEM into STEAM Programs Correction to: A. J. Stewart et al. (eds.), Converting STEM into STEAM Programs, Environmental Discourses in Science Education 5, https://doi.org/10.1007/978-3-030-25101-7