دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Olfa Boubaker (editor)
سری:
ISBN (شابک) : 0128213507, 9780128213506
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 382
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 30 مگابایت
در صورت تبدیل فایل کتاب Control Theory in Biomedical Engineering: Applications in Physiology and Medical Robotics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه کنترل در مهندسی پزشکی: کاربردهای فیزیولوژی و رباتیک پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نظریه کنترل در مهندسی زیست پزشکی: کاربردها در فیزیولوژی و رباتیک پزشکی اهمیت تئوری کنترل و کنترل بازخورد را در زندگی ما برجسته میکند و توضیح میدهد که چگونه این نظریه برای پیشرفتهای پزشکی آینده مرکزی است. نظریه کنترل برای درک مسیرهای بازخورد در سیستم های فیزیولوژیکی (سیستم غدد درون ریز، سیستم ایمنی، سیستم عصبی) و مفهومی برای ساخت اندام های مصنوعی اساسی است. این کتاب برای دانشجویان فارغ التحصیل و محققین رشته های مهندسی کنترل و مهندسی زیست پزشکی و دانشجویان پزشکی و شاغلینی که به دنبال افزایش درک خود از فرآیندهای فیزیولوژیکی، رباتیک پزشکی (پاها، دست ها، زانوها) و کنترل دستگاه های مصنوعی (پیس میکر، انسولین) هستند مناسب است. دستگاه های تزریق).
تئوری کنترل عمیقاً بر زندگی روزمره بخش بزرگی از جمعیت بشری از جمله معلولان و سالمندانی که از روبات های کمکی و توانبخشی برای بهبود کیفیت زندگی و افزایش استقلال خود استفاده می کنند تأثیر می گذارد.
Control Theory in Biomedical Engineering: Applications in Physiology and Medical Robotics highlights the importance of control theory and feedback control in our lives and explains how this theory is central to future medical developments. Control theory is fundamental for understanding feedback paths in physiological systems (endocrine system, immune system, neurological system) and a concept for building artificial organs. The book is suitable for graduate students and researchers in the control engineering and biomedical engineering fields, and medical students and practitioners seeking to enhance their understanding of physiological processes, medical robotics (legs, hands, knees), and controlling artificial devices (pacemakers, insulin injection devices).
Control theory profoundly impacts the everyday lives of a large part of the human population including the disabled and the elderly who use assistive and rehabilitation robots for improving the quality of their lives and increasing their independence.
Cover CONTROL THEORY IN BIOMEDICAL ENGINEERING Applications in Physiology and Medical Robotics Copyright Contributors Preface Part I: Applications in physiology Modeling and control in physiology Introduction Mathematical modeling in physiology Modeling methodology Modeling approaches Compartmental modeling approach Equivalent modeling approach Data-driven modeling approach Classification of mathematical models Structural identifiability Practical identifiability Application examples The endocrine system models The tumor-immune system model The cardiovascular system Chaos in physiology Control in physiology The homeostasis principal Homeostasis examples Control strategies in homeostasis Control therapy applications Optimal control Adaptive control Fuzzy logic control Future trends and challenges Conclusion References Mathematical modeling of cholesterol homeostasis Introduction Circulation of cholesterol in the human body Two-compartment model of cholesterol homeostasis Estimating the values of the model parameters Analysis of the solutions Summary and conclusion References Adaptive control of artificial pancreas systems for treatment of type 1 diabetes Introduction Methods Adaptive-personalized PIC estimator Recursive subspace-based system identification PIC cognizant AL-MPC algorithm Adaptive glycemic and plasma insulin risk indexes Plasma insulin concentration bounds Feature extraction for manipulating constraints Adaptive-learning MPC formulation Results Conclusions Acknowledgments References Modeling and optimal control of cancer-immune system Introduction Mathematical models Boundedness and nonnegativity of the model solutions Model with chemotherapy and control Numerical simulations Numerical algorithm Conclusion Appendix DDEs with optimal control Matlab program for optimal control with DDEs References Genetic fuzzy logic based system for arrhythmia classification Introduction Methodology Preprocessing ECG signal filtering ECG feature extraction Fuzzy arrhythmia classification FLC configuration FLC optimization Experimental results Comparison study between the performances before and after the genetic optimization Comparison analysis with related works Conclusion References Modeling simple and complex handwriting based on EMG signals Introduction History of handwriting modeling Kalman filter-based model Zhang-Kamavuako model (ZK) Modeling of cursive writing from two EMG signals Experimental approach and system presentation Murata-Kosaku-Sano model (MKS) Interval observer for robust handwriting characterization Discussion Conclusion References Part II: Applications in medical robotics Medical robotics Introduction Literature review Classification of medical robotics Advantages and fundamental requirements Advantages Fundamental requirements Robot-assisted surgery History Applications Commercially available/FDA-approved robotic devices and platforms Rehabilitation robotics and assistive technologies Motivations Literature review A brief history Classification and related devices Robots in medical training as body-part simulators Conclusion References Wearable mechatronic devices for upper-limb amputees Introduction Human sensory feedback and physiology of the human skin Tactile feedback Kinesthetic feedback Wearable device: Preliminary concepts Definitions Wearable device Empowering robotic exoskeletons (extenders) Orthotic robots Prosthetic robots Features Upper-limb prosthetic technologies Overview Body-powered prosthesis Externally powered prosthesis Myoelectric prostheses EMG control strategies Targeted muscle reinnervation Sensory feedback prosthesis Sensory substitution feedback Vibrotactile Electrotactile Others Modality-matched feedback Mechanotactile Direct-neural Summary of wearable devices Challenges Conclusion References Exoskeletons in upper limb rehabilitation: A review to find key challenges to improve functionality Introduction Existing upper limb exoskeletons Design requirements and challenges Safety Comfort of wearing Alignment of exoskeleton joints with human joints Actuation Power transmission mechanism Singularity Backdrivability Sensors Control approaches Discussion Conclusion References A double pendulum model for human walking control on the treadmill and stride-to-stride fluctuations: Control ... Introduction Material and method Double pendulum model Controller design Experimental data Adding uncertainty to the model Results Discussion Conclusion References Continuum NasoXplorer manipulator with shape memory actuators for transnasal exploration Clinical needs and intended engineering design objectives Methods Device specifications from anatomical considerations Anatomical variations in shape Anatomical variations in size Anatomical variations based on age and gender Estimation of the distance between nasal inlet to the channel Estimation of area of narrowest path in the nasopharynx region Device design specifications Overall design Design components and design rationale Optical zooming segment and camera Actuation and control of the bending segment Stiffness modulation Design verification Bending capability: Determine the bending angle Temperature monitoring during both actuation and retraction Dynamic force test with changes in temperature Insertion test Design review Failure mode analysis Remarks on the prior comparative art Satisfaction benchmarking in clinical needs Target metrics Needs-metrics mapping matrix Metrics benchmarking Conclusion and future work Appendix: Supplementary material References Tunable stiffness using negative Poisson's ratio toward load-bearing continuum tubular mechanisms in medical ... Background Literature review/concept evaluation Electro/magneto-rheological fluids Phase change materials Jamming methods Negative pressure jamming Concept combining jamming and continuum metamaterials with negative Poisson's ratio materials (auxetics) Concentric continuum metastructures Fabrication methodology Rolling two-dimensional sheets 3D printed auxetics Material filaments Auxetic material designs Hexagonal re-entrant honeycomb structure Chiral structure Star honeycomb structure Missing rib structure Double arrowhead structure Continuum metastructural test Mechanical test specifications Continuum metastructural tests Re-entrant honeycomb structure tests Missing rib structure tests Double arrow honeycomb structure tests Chiral structure tests Star structure tests Results discussions Kirigami and origami methods Kirigami methods Cardboard paper Silicone rubber High-density foam Origami methods Collapsible origami structure Miura origami structure Waterbomb tube Conclusion References Appendices for Chapter 2 Index Back Cover