دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الکترونیک: الکترونیک ویرایش: نویسندگان: Shuang Cong سری: ISBN (شابک) : 1118608127, 9781118608128 ناشر: Wiley سال نشر: 2014 تعداد صفحات: 446 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 مگابایت
کلمات کلیدی مربوط به کتاب کنترل سیستم های کوانتومی: نظریه و روش ها: کنترل کیفیت تولید صنعتی سیستم های عملیاتی مهندسی حمل و نقل نقشه کشی مکانیکی ترسیم دینامیک سیالات مکانیک شکستگی مکانیک هیدرولیک ماشین آلات رباتیک اتوماسیون تریبولوژی جوش نظریه کوانتومی فیزیک علوم ریاضی ریاضیات کشاورزی نجوم اخترفیزیک زیست شناسی زیست شناسی علوم زمین
در صورت تبدیل فایل کتاب Control of Quantum Systems: Theory and Methods به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کنترل سیستم های کوانتومی: نظریه و روش ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مرجع تحقیقاتی پیشرفته برای بررسی سیستمهای کوانتومی بسته و باز
کنترل سیستمهای کوانتومی: نظریه و روشهاارائه میکند بینشی به رویکردهای مدرن برای کنترل تکامل سیستمهای کوانتومی، با تمرکز بر سیستمهای کوانتومی بسته و باز (اتلافی). این موضوع بهموقع جدیدترین تحقیقات در این زمینه را پوشش میدهد و روشهای عملی را ارائه و خلاصه میکند و به جنبههای نظریتر کنترل میپردازد، که مورد توجه فعلی هستند، اما در کتابهای درسی دیگر در این سطح پوشش داده نشدهاند.
تئوری کنترل کوانتومی و روش های نوشته شده در کتاب حاصل ترکیب تئوری کنترل ماکرو و ویژگی های سیستم کوانتومی میکروسکوپی است. با پیشرفت فناوری نانو، تئوری کنترل کوانتومی و روشهای پیشنهادی امروز در سیستمهای کوانتومی واقعی ظرف پنج سال مفید خواهند بود. پیشرفت تئوری و روشهای کنترل کوانتومی باعث پیشرفت و توسعه اطلاعات کوانتومی، محاسبات کوانتومی و ارتباطات کوانتومی میشود.
خوانندگان را با نظریههای بالقوه و روشهای پیشرفته برای حل مشکلات موجود در اپتیک کوانتومی مجهز میکند. اطلاعات/محاسبات، سیستمهای مزوسکوپی، سیستمهای اسپین، دستگاههای ابررسانا، دستگاههای نانومکانیکی، مترولوژی دقیق.
ایدهآل برای محققان، دانشگاهیان و مهندسان در مهندسی کوانتوم، محاسبات کوانتومی، اطلاعات کوانتومی، ارتباطات کوانتومی، فیزیک کوانتومی ، و شیمی کوانتومی، که علایق تحقیقاتی آنها کنترل سیستم های کوانتومی است.
Advanced research reference examining the closed and open quantum systems
Control of Quantum Systems: Theory and Methods provides an insight into the modern approaches to control of quantum systems evolution, with a focus on both closed and open (dissipative) quantum systems. The topic is timely covering the newest research in the field, and presents and summarizes practical methods and addresses the more theoretical aspects of control, which are of high current interest, but which are not covered at this level in other text books.
The quantum control theory and methods written in the book are the results of combination of macro-control theory and microscopic quantum system features. As the development of the nanotechnology progresses, the quantum control theory and methods proposed today are expected to be useful in real quantum systems within five years. The progress of the quantum control theory and methods will promote the progress and development of quantum information, quantum computing, and quantum communication.
Equips readers with the potential theories and advanced methods to solve existing problems in quantum optics/information/computing, mesoscopic systems, spin systems, superconducting devices, nano-mechanical devices, precision metrology.
Ideal for researchers, academics and engineers in quantum engineering, quantum computing, quantum information, quantum communication, quantum physics, and quantum chemistry, whose research interests are quantum systems control.
Control of Quantum Systems: Theory and Methods Contents About the Author Preface 1 Introduction 1.1 Quantum States 1.2 Quantum Systems Control Models 1.2.1 Schrödinger Equation 1.2.2 Liouville Equation 1.2.3 Markovian Master Equations 1.2.4 Non-Markovian Master Equations 1.3 Structures of Quantum Control Systems 1.4 Control Tasks and Objectives 1.5 System Characteristics Analyses 1.5.1 Controllability 1.5.2 Reachability 1.5.3 Observability 1.5.4 Stability 1.5.5 Convergence 1.5.6 Robustness 1.6 Performance of Control Systems 1.6.1 Probability 1.6.2 Fidelity 1.6.3 Purity 1.7 Quantum Systems Control 1.7.1 Description of Control Problems 1.7.2 Quantum Control Theory and Methods 1.8 Overview of the Book References 2 State Transfer and Analysis of Quantum Systems on the Bloch Sphere 2.1 Analysis of a Two-level Quantum System State 2.1.1 Pure State Expression on the Bloch Sphere 2.1.2 Mixed States in the Bloch Sphere 2.1.3 Control Trajectory on the Bloch Sphere 2.2 State Transfer of Quantum Systems on the Bloch Sphere 2.2.1 Control of a Single Spin-1/2 Particle 2.2.2 Situation with the Minimum Ωt of Control Fields 2.2.3 Situation with a Fixed Time T 2.2.4 Numerical Simulations and Results Analyses References 3 Control Methods of Closed Quantum Systems 3.1 Improved Optimal Control Strategies Applied in Quantum Systems 3.1.1 Optimal Control of Quantum Systems 3.1.2 Improved Quantum Optimal Control Method 3.1.3 Krotov-Based Method of Optimal Control 3.1.4 Numerical Simulation and Performance Analysis 3.2 Control Design of High-Dimensional Spin-1/2 Quantum Systems 3.2.1 Coherent Population Transfer Approaches 3.2.2 Relationships between the Hamiltonian of Spin-1/2 Quantum Systems under Control and the Sequence of Pulses 3.2.3 Design of the Control Sequence of Pulses 3.2.4 Simulation Experiments of Population Transfer 3.3 Comparison of Time Optimal Control for Two-Level Quantum Systems 3.3.1 Description of System Model 3.3.2 Geometric Control 3.3.3 Bang-Bang Control 3.3.4 Time Comparisons of Two Control Strategies 3.3.5 Numerical Simulation Experiments and Results Analyses References 4 Manipulation of Eigenstates – Based on Lyapunov Method 4.1 Principle of the Lyapunov Stability Theorem 4.2 Quantum Control Strategy Based on State Distance 4.2.1 Selection of the Lyapunov Function 4.2.2 Design of the Feedback Control Law 4.2.3 Analysis and Proof of the Stability 4.2.4 Application to a Spin-1/2 Particle System 4.3 Optimal Quantum Control Based on the Lyapunov Stability Theorem 4.3.1 Description of the System Model 4.3.2 Optimal Control Law Design and Property Analysis 4.3.3 Simulation Experiments and the Results Comparisons 4.4 Realization of the Quantum Hadamard Gate Based on the Lyapunov Method 4.4.1 Mathematical Model 4.4.2 Realization of the Quantum Hadamard Gate 4.4.3 Design of Control Fields 4.4.4 Numerical Simulations and Comparison Results Analyses References 5 Population Control Based on the Lyapunov Method 5.1 Population Control of Equilibrium State 5.1.1 Preliminary Notions 5.1.2 Control Laws Design 5.1.3 Analysis of the Largest Invariant Set 5.1.4 Considerations on the Determination of P 5.1.5 Illustrative Example 5.1.6 Appendix: Proof of Theorem 5.1 5.2 Generalized Control of Quantum Systems in the Frame of Vector Treatment 5.2.1 Design of Control Law 5.2.2 Convergence Analysis 5.2.3 Numerical Simulation on a Spin-1/2 System 5.3 Population Control of Eigenstates 5.3.1 System Model and Control Laws 5.3.2 Largest Invariant Set of Control Systems 5.3.3 Analysis of the Eigenstate Control 5.3.4 Simulation Experiments References 6 Quantum General State Control Based on Lyapunov Method 6.1 Pure State Manipulation 6.1.1 Design of Control Law and Discussion 6.1.2 Control System Simulations and Results Analyses 6.2 Optimal Control Strategy of the Superposition State 6.2.1 Preliminary Knowledge 6.2.2 Control Law Design 6.2.3 Numerical Simulations 6.3 Optimal Control of Mixed-State Quantum Systems 6.3.1 Model of the System to be Controlled 6.3.2 Control Law Design 6.3.3 Numerical Simulations and Results Analyses 6.4 Arbitrary Pure State to a Mixed-State Manipulation 6.4.1 Transfer from an Arbitrary Pure State to an Eigenstate 6.4.2 Transfer from an Eigenstate to a Mixed State by Interaction Control 6.4.3 Control Design for a Mixed-State Transfer 6.4.4 Numerical Simulation Experiments References 7 Convergence Analysis Based on the Lyapunov Stability Theorem 7.1 Population Control of Quantum States Based on Invariant Subsets with the Diagonal Lyapunov Function 7.1.1 System Model and Control Design 7.1.2 Correspondence between any Target Eigenstate and the Value of the Lyapunov Function 7.1.3 Invariant Set of Control Systems 7.1.4 Numerical Simulations 7.1.5 Summary and Discussion 7.2 A Convergent Control Strategy of Quantum Systems 7.2.1 Problem Description 7.2.2 Construction Method of the Observable Operator 7.2.3 Proof of Convergence 7.2.4 Route Extension Strategy 7.2.5 Numerical Simulations 7.3 Path Programming Control Strategy of Quantum State Transfer 7.3.1 Control Law Design Based on the Lyapunov Method in the Interaction Picture 7.3.2 Transition Path Programming Control Strategy 7.3.3 Numerical Simulations and Results Analyses References 8 Control Theory and Methods in Degenerate Cases 8.1 Implicit Lyapunov Control of Multi-Control Hamiltonian Systems Based on State Error 8.1.1 Control Design 8.1.2 Convergence Proof 8.1.3 Relation between Two Lyapunov Functions 8.1.4 Numerical Simulation and Result Analysis 8.2 Quantum Lyapunov Control Based on the Average Value of an Imaginary Mechanical Quantity 8.2.1 Control Law Design and Convergence Proof 8.2.2 Numerical Simulation and Result Analysis 8.3 Implicit Lyapunov Control for the Quantum Liouville Equation 8.3.1 Description of Problem 8.3.2 Derivation of Control Laws 8.3.3 Convergence Analysis 8.3.4 Numerical Simulations References 9 Manipulation Methods of the General State 9.1 Quantum System Schmidt Decomposition and its Geometric Analysis 9.1.1 Schmidt Decomposition of Quantum States 9.1.2 Definition of Entanglement Degree Based on the Schmidt Decomposition 9.1.3 Application of the Schmidt Decomposition 9.2 Preparation of Entanglement States in a Two-Spin System 9.2.1 Construction of the Two-Spin Systems Model in the Interaction Picture 9.2.2 Design of the Control Field Based on the Lyapunov Method 9.2.3 Proof of Convergence for the Bell States 9.2.4 Numerical Simulations 9.3 Purification of the Mixed State for Two-Dimensional Systems 9.3.1 Purification by Means of a Probe 9.3.2 Purification by Interaction Control 9.3.3 Numerical Experiments and Results Comparisons 9.3.4 Discussion References 10 State Control of Open Quantum Systems 10.1 State Transfer of Open Quantum Systems with a Single Control Field 10.1.1 Dynamical Model of Open Quantum Systems 10.1.2 Derivation of Optimal Control Law 10.1.3 Control System Design 10.1.4 Numerical Simulations and Results Analyses 10.2 Purity and Coherence Compensation through the Interaction between Particles 10.2.1 Method of Compensation for Purity and Coherence 10.2.2 Analysis of System Evolution 10.2.3 Numerical Simulations 10.2.4 Discussion Appendix 10.A Proof of Equation 10.59 References 11 State Estimation, Measurement, and Control of Quantum Systems 11.1 State Estimation Methods in Quantum Systems 11.1.1 Background of State Estimation of Quantum Systems 11.1.2 Quantum State Estimation Methods Based on the Measurement of Identical Copies 11.1.3 Quantum State Reconstruction Methods Based on System Theory 11.2 Entanglement Detection and Measurement of Quantum Systems 11.2.1 Entanglement States 11.2.2 Entanglement Witnesses 11.2.3 Entanglement Measures 11.2.4 Non-linear Separability Criteria 11.3 Decoherence Control Based on Weak Measurement 11.3.1 Construction of a Weak Measurement Operator 11.3.2 Applicability of Weak Measurement 11.3.3 Effects on States Appendix 11.A Proof of Normed Linear Space (A, ‖•‖) References 12 State Preservation of Open Quantum Systems 12.1 Coherence Preservation in a ????-Type Three-Level Atom 12.1.1 Models and Objectives 12.1.2 Design of Control Field 12.1.3 Analysis of Singularities Issues 12.1.4 Numerical Simulations 12.2 Purity Preservation of Quantum Systems by a Resonant Field 12.2.1 Problem Description 12.2.2 Purity Property Preservation 12.2.3 Discussion 12.3 Coherence Preservation in Markovian Open Quantum Systems 12.3.1 Problem Formulation 12.3.2 Design of Control Variables 12.3.3 Numerical Simulations 12.3.4 Discussion Appendix 12.A Derivation of HC References 13 State Manipulation in Decoherence-Free Subspace 13.1 State Transfer and Coherence Maintainance Based on DFS for a Four-Level Energy Open Quantum System 13.1.1 Construction of DFS and the Desired Target State 13.1.2 Design of the Lyapunov-Based Control Law for State Transfer 13.1.3 Numerical Simulations 13.2 State Transfer Based on a Decoherence-Free Target State for a ????-Type N-Level Atomic System 13.2.1 Construction of the Decoherence-Free Target State 13.2.2 Design of the Lyapunov-Based Control Law for State Transfer 13.2.3 Numerical Simulations and Results Analyses 13.3 Control of Quantum States Based on the Lyapunov Method in Decoherence-Free Subspaces 13.3.1 Problem Description 13.3.2 Control Design in the Interaction Picture 13.3.3 Construction of P and Convergence Analysis 13.3.4 Numerical Simulation Examples and Discussion References 14 Dynamic Decoupling Quantum Control Methods 14.1 Phase Decoherence Suppression of an n-Level Atom in Ξ-Configuration with Bang-Bang Controls 14.1.1 Dynamical Decoupling Mechanism 14.1.2 Design of the Bang–Bang Operations Group in Phase Decoherence 14.1.3 Examples of Design 14.2 Optimized Dynamical Decoupling in Ξ-Type n-Level Atom 14.2.1 Periodic Dynamical Decoupling 14.2.2 Uhrig Dynamical Decoupling 14.2.3 Behaviors of Quantum Coherence under Various Dynamical Decoupling Schemes 14.2.4 Examples 14.2.5 Discussion 14.3 An Optimized Dynamical Decoupling Strategy to Suppress Decoherence 14.3.1 Universal Dynamical Decoupling for a Qubit 14.3.2 An Optimized Dynamical Decoupling Scheme 14.3.3 Simulation and Comparison 14.3.4 Discussion References 15 Trajectory Tracking of Quantum Systems 15.1 Orbit Tracking of Quantum States Based on the Lyapunov Method 15.1.1 Description of the System Model 15.1.2 Design of Control Law 15.1.3 Numerical Simulation Experiments and Results Analysis 15.2 Orbit Tracking Control of Quantum Systems 15.2.1 System Model and Control Law Design 15.2.2 Numerical Simulation Experiments 15.3 Adaptive Trajectory Tracking of Quantum Systems 15.3.1 Description of the System Model 15.3.2 Control System Design and Characteristic Analysis 15.3.3 Numerical Simulation and Result Analysis 15.4 Convergence of Orbit Tracking for Quantum Systems 15.4.1 Description of the Control System Model 15.4.2 Control Law Derivation 15.4.3 Convergence Analysis 15.4.4 Applications and Experimental Results Analyses References Index