ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Control of Power Electronic Converters and Systems: Volume 3

دانلود کتاب کنترل مبدل ها و سیستم های الکترونیکی قدرت: دوره 3

Control of Power Electronic Converters and Systems: Volume 3

مشخصات کتاب

Control of Power Electronic Converters and Systems: Volume 3

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 0128194324, 9780128194324 
ناشر: Academic Press 
سال نشر: 2021 
تعداد صفحات: 0 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 215 مگابایت 

قیمت کتاب (تومان) : 53,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Control of Power Electronic Converters and Systems: Volume 3 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کنترل مبدل ها و سیستم های الکترونیکی قدرت: دوره 3 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کنترل مبدل ها و سیستم های الکترونیکی قدرت: دوره 3



کنترل مبدل‌ها و سیستم‌های الکترونیک قدرت، جلد 3، موضوعات نوظهور در کنترل الکترونیک قدرت و مبدل‌ها، از جمله تئوری پشت کنترل، و عملیات عملی، مدل‌سازی و کنترل پایه را بررسی می‌کند. مدل های سیستم قدرت این کتاب مهم ترین روش های طراحی کنترلر از جمله رویه های آنالوگ و دیجیتال را معرفی می کند. این مرجع توصیف دینامیکی رفتار ترمینال برای مبدل ها و همچنین حفظ پایداری و کیفیت توان سیستم های قدرت مدرن را توضیح می دهد. برای مهندسین در کاربردهای نوظهور مبدل های الکترونیک قدرت و کسانی که روش های طراحی کنترل را با کاربردهای مختلف در فناوری الکترونیک قدرت ترکیب می کنند مفید است.

پرداختن به فعل و انفعالات کنترل کننده - با توجه به افزایش یکپارچه سازی انرژی های تجدیدپذیر و چالش های مرتبط با پایداری و کیفیت توان - در مبدل های قدرت و اجزای غیرفعال رایج تر می شود.


توضیحاتی درمورد کتاب به خارجی

Control of Power Electronic Converters and Systems, Volume 3, explores emerging topics in the control of power electronics and converters, including the theory behind control, and the practical operation, modeling, and control of basic power system models. This book introduces the most important controller design methods, including both analog and digital procedures. This reference explains the dynamic characterization of terminal behavior for converters, as well as preserving the stability and power quality of modern power systems. Useful for engineers in emerging applications of power electronic converters and those combining control design methods into different applications in power electronics technology.

Addressing controller interactions - in light of increasing renewable energy integration and related challenges with stability and power quality - is becoming more frequent in power converters and passive components.



فهرست مطالب

Front Cover
Control of Power Electronic Converters and Systems
Control of Power Electronic Converters and Systems
Copyright
Contents
Contributors
Preface
1 - Advanced control of power electronic systems—an overview of methods
	1.1 Introduction
	1.2 Linear controller implementation and analysis
		1.2.1 Implement PI controller
		1.2.2 Implement PR controller
		1.2.3 Implement repetitive controller
		1.2.4 Pole placement control
		1.2.5 Linear quadratic regulator
	1.3 Nonlinear controller implementation and analysis
		1.3.1 Hysteresis control
		1.3.2 Lookup table–based direct power control
		1.3.3 Model predictive control
		1.3.4 Backstepping control
		1.3.5 Sliding mode control
		1.3.6 Feedback linearization
		1.3.7 Passivity control
		1.3.8 Adaptive control
		1.3.9 H∞ control
		1.3.10 Artificial intelligence
	1.4 Summary
	References
2 - Robust design and passivity control methods
	2.1 Introduction
	2.2 State space model of power electronic systems
		2.2.1 Introduction
		2.2.2 Grid-connected voltage source inverter
		2.2.3 An example of a VSC (STATCOM)
	2.3 Robust controller design
		2.3.1 Voltage-modulated direct power control
		2.3.2 Tracking controller
		2.3.3 Robust control design
		2.3.4 Simulation results
	2.4 Robust small-signal stabilization control design
		2.4.1 Introduction
		2.4.2 Lur’e type model
			2.4.2.1 Example 1: DC/DC buck converter model
			2.4.2.2 Example 2: DC microgrid model
		2.4.3 Robust small-signal stability analysis problem
		2.4.4 Robust stability analysis method
		2.4.5 Robust stabilization control design
			2.4.5.1 Example 3: robust small-signal stability of a DC microgrid
	2.5 Passivity-based control design
		2.5.1 Introduction
		2.5.2 Port-controlled Hamiltonian system
		2.5.3 Passivity-based control design in a microgrid
		2.5.4 Passivity control design in STATCOM
	2.6 Conclusions and future prospective
	Acknowledgment
	References
3 - Sliding mode controllers in power electronic systems
	3.1 Introduction
	3.2 System dynamics of a voltage source inverter
	3.3 Introduction to sliding mode control
		3.3.1 Reachability condition in the sliding mode control
		3.3.2 Control input calculation
	3.4 Classical sliding mode control
	3.5 Boundary-layer sliding mode control
		3.5.1 Adaptive boundary-layer sliding mode control
	3.6 Adaptive sliding mode control
	3.7 Integral sliding mode control
	3.8 Terminal sliding mode control
	3.9 Second-order sliding mode control
		3.9.1 Twisting SMC
		3.9.2 Super-twisting
		3.9.3 Adaptive super-twisting
	3.10 Comparison of different SMCs
	3.11 Experimental results
		3.11.1 Steady-state performance
		3.11.2 Dynamic performance
	3.12 Conclusions
	References
4 - Model predictive control of power converters, motor drives, and microgrids
	4.1 Introduction on MPC
	4.2 MPC for permanent-magnet synchronous motor drives
		4.2.1 Model of PMSM
		4.2.2 FCS-MPC for PMSM drives
		4.2.3 Performance evaluations of MPC with simulations
		4.2.4 Summary
	4.3 MPC for microgrids
		4.3.1 Dynamics and predictive model of VSC-based MG
		4.3.2 MPC for robust and fast operation of an islanded AC MG
		4.3.3 Dynamic stabilization of a DC MG using MPC
		4.3.4 Performance evaluation with experimental results
		4.3.5 Summary
	4.4 MPC for renewable energy applications (PMSG wind turbine)
		4.4.1 Modeling of PMSG wind turbine system with back-to-back power converter
		4.4.2 Direct model predictive current control
		4.4.3 FCS-MPC for three-level PMSG systems
	4.5 Conclusions and future trends
	References
5 - Adaptive control in power electronic systems
	5.1 Introduction
	5.2 System dynamics on a UPS system
	5.3 System identification
		5.3.1 Parameters identification
			5.3.1.1 Recursive least-square estimation
		5.3.2 State identification
			5.3.2.1 Observability condition
			5.3.2.2 Luenberger observer
			5.3.2.3 Kalman filter
			5.3.2.4 Disturbance estimation based on an adaptive observer
	5.4 Indirect adaptive predictive control
		5.4.1 Experimental results
	5.5 Model reference direct adaptive control of UPS
		5.5.1 The outer voltage control loop
		5.5.2 The inner current control loop
		5.5.3 Experimental results
	5.6 Conclusion
	References
6 - Machine learning technique for low-frequency modulation techniques in power converters
	6.1 Introduction
	6.2 Cascaded H-bridge active power filter configuration
	6.3 ANN for the asymmetric selective harmonic current mitigation-PWM
	6.4 The proposed technique simulation and experimental results
		6.4.1 Simulation results
		6.4.2 Experimental results
	6.5 Conclusion
	References
7 - Overview of stability analysis methods in power electronics
	7.1 Introduction
	7.2 Small-signal stability analysis methods
		7.2.1 Modeling of power converter
			7.2.1.1 State space averaging method
			7.2.1.2 Generalized state space averaging method
			7.2.1.3 Harmonic state space method
			7.2.1.4 Black box method
		7.2.2 Eigenvalue method
			7.2.2.1 Component modeling and system integration
			7.2.2.2 Eigenvalue stability analysis
				7.2.2.2.1 Eigenvalue analysis
				7.2.2.2.2 Participation factor analysis
				7.2.2.2.3 Sensitivity analysis
			7.2.2.3 Verification
		7.2.3 Impedance-based method
			7.2.3.1 Impedance modeling
				7.2.3.1.1 Impedance modeling
				7.2.3.1.2 Network partitioning
			7.2.3.2 Stability analysis
			7.2.3.3 Verification of analysis
		7.2.4 Comparison of methods
	7.3 Large-signal stability analysis methods
		7.3.1 Time-domain simulations
		7.3.2 Lyapunov-based analytical methods
			7.3.2.1 Takagi–Sugeno multimodel method
			7.3.2.2 Brayton–Moser’s mixed potential
			7.3.2.3 Optimal Lyapunov function generation
	7.4 Case studies with practical examples
		7.4.1 Small-signal stability analysis
			7.4.1.1 Eigenvalue method
				7.4.1.1.1 System modeling
			7.4.1.2 Impedance-based method
				7.4.1.2.1 Impedance modeling
			7.4.1.3 Verification
		7.4.2 Large-signal stability analysis on a power electronic system
	7.5 Summary
	References
8 - Cyber security in power electronic systems
	8.1 Introduction
	8.2 Cyber physical architecture of power electronic converters
		8.2.1 Physical stage
		8.2.2 Cyber stage
	8.3 Vulnerability analysis of cyber attacks on control of VSCs
		8.3.1 Cyber security
		8.3.2 Vulnerability assessment
	8.4 Cyber attack detection and mitigation mechanisms in power electronic systems
		8.4.1 Detection
		8.4.2 Mitigation
	8.5 Test cases
		8.5.1 Test case I
		8.5.2 Test case II
	8.6 Conclusions and future challenges
	References
9 - Advanced modeling and control of voltage source converters with LCL filters
	9.1 Introduction
	9.2 Modeling of the VSCs with LCL filters
		9.2.1 Modeling methods in balanced three-phase systems
		9.2.2 Modeling methods in unbalanced three-phase systems
			9.2.2.1 Generalized averaged model
			9.2.2.2 Harmonic state space model
		9.2.3 Simulation examples
	9.3 Alternative current control of the VSCs with LCL filters
		9.3.1 Control in synchronous reference (dq) frame
		9.3.2 Resonance damping technique
			9.3.2.1 Passive damping technique
			9.3.2.2 Active damping technique using filter capacitor current feedback
			9.3.2.3 Active damping technique under grid current feedback
			9.3.2.4 Active damping technique under converter current feedback
		9.3.3 Control under unbalanced grid voltages
	9.4 Impedance-based stability analysis under weak grid conditions
		9.4.1 System control of the LCL-filtered VSCs in αβ frame and dq frame
		9.4.2 Impedance-based stability analysis
	References
10 - Phase-locked loops and their design
	10.1 Introduction
	10.2 PLL’s control and design
	10.3 Three-phase PLLs
		10.3.1 Conventional synchronous reference frame PLL
		10.3.2 Moving average filter–based PLLs
		10.3.3 Notch filter–based PLLs
		10.3.4 Sinusoidal signal integrator–based PLLs
		10.3.5 Second-order generalized integrator–based PLLs
		10.3.6 Complex coefficient filter–based PLLs
		10.3.7 Delayed signal cancellation–based PLLs
		10.3.8 Multiple SRF filter–based PLLs
		10.3.9 Other three-phase PLLs
		10.3.10 Performance comparison and recommendation
	10.4 Single-phase PLLs
		10.4.1 Standard P-PLLs
		10.4.2 Low pass filter–based P-PLLs
		10.4.3 Moving average filter–based P-PLLs
		10.4.4 Notch filter–based P-PLLs
		10.4.5 Double-frequency and amplitude compensation–based P-PLLs
		10.4.6 Modified mixer PD-Based P-PLLs
		10.4.7 Transfer delayed–based PLLs
		10.4.8 Inverse park transformation–based PLLs
		10.4.9 Generalized integrator–based PLLs
		10.4.10 Synthesis circuit PLLs
		10.4.11 Performance comparison and recommendation
	10.5 Summary
	References
11 - Stability and robustness improvement of power converters
	11.1 Introduction
	11.2 Stability and robustness improvement of current control
		11.2.1 Small-signal modeling
			11.2.1.1 Linearization of the converter power stage
			11.2.1.2 Small-signal model of VSC with converter-side current control
			11.2.1.3 Small-signal model of VSC with grid-side current control
		11.2.2 Passivity-based stability analysis
			11.2.2.1 Passivity-based stability analysis for converter-side current control
			11.2.2.2 Passivity-based stability analysis for converter-side current control
		11.2.3 Robustness enhancement
			11.2.3.1 Time delay reduction
			11.2.3.2 Design of passive filters
			11.2.3.3 Active damping
	11.3 Stability and robustness improvement of outer-loop control
		11.3.1 Small-signal modeling
			11.3.1.1 Linearization of the PLL
			11.3.1.2 Small-signal model of VSC with PLL
			11.3.1.3 Linearization of the DC-link voltage control
			11.3.1.4 Small-signal model of VSC with DC-link voltage control loop
		11.3.2 MIMO-based stability analysis
			11.3.2.1 Dynamic impact of PLL
			11.3.2.2 Dynamic impact of DVC
		11.3.3 Robustness enhancement
			11.3.3.1 PLL design
			11.3.3.2 DVC design
	References
12 - High switching frequency three-phase current-source converters and their control
	12.1 Challenges of high switching frequency CSCs control
		12.1.1 Multiple timescale dynamics of high switching frequency CSCs
		12.1.2 Control methods of high switching frequency CSCs
	12.2 Stability analysis of the single-loop DC-link current control
		12.2.1 Small-signal modeling
		12.2.2 Stable region of single-loop DC-link current control
		12.2.3 Experimental validation
	12.3 Active damping methods for high switching frequency CSCs
		12.3.1 Virtual impedance analysis
			12.3.1.1 Capacitor-voltage feedback (Fig. 12.12)
			12.3.1.2 Capacitor-current feedback (Fig. 12.13)
			12.3.1.3 Inductor-current feedback (Fig. 12.14)
			12.3.1.4 Time delay effect on virtual impedance
		12.3.2 Experimental validation of active damping
			12.3.2.1 Capacitor-voltage feedback (see Fig. 12.12)
			12.3.2.2 Capacitor-current feedback (see Fig. 12.13)
			12.3.2.3 Inductor-current feedback (see Fig. 12.14)
	12.4 Summary
	References
13 - High-power current source converters
	13.1 Introduction
	13.2 Current source converters and applications
		13.2.1 Thyristor-based technology
		13.2.2 PWM CSC-based medium-voltage drives
		13.2.3 More potential application
	13.3 Parallel CSC system and modulation strategies
		13.3.1 Parallel CSC topology
		13.3.2 CSC modulation strategies
			13.3.2.1 Space vector modulation
			13.3.2.2 Selective harmonic elimination
			13.3.2.3 Direct duty-ratio pulse width modulation
			13.3.2.4 Comparison of different CSC modulations
	13.4 Parallel CSC and circuit analysis
		13.4.1 CM loop circuit of parallel CSC
		13.4.2 DC-link circuit of parallel CSC
	13.5 DC current balance and CMV reduction methods
		13.5.1 SVM-based methods
			13.5.1.1 Interleaved SVM
			13.5.1.2 Multilevel SVM
		13.5.2 Carrier-shifted SPWM-based methods
		13.5.3 Case study results
	13.6 Conclusions
	References
14 - Parallel operation of power converters and their filters
	14.1 Introduction
	14.2 Circulating current modeling
		14.2.1 Parallel converters with a common DC bus
			14.2.1.1 Impact of the modulator mismatch
			14.2.1.2 Impact of the impedance mismatch
		14.2.2 Parallel converters with separate DC bus
	14.3 Circulating current control
		14.3.1 Current sharing schemes
		14.3.2 Droop control scheme
		14.3.3 Zero vector dwell time control
	14.4 Harmonic performance improvement through interleaved operation
		14.4.1 Modulation of parallel interleaved converters
		14.4.2 Symmetrically interleaved converters
		14.4.3 Harmonic performance evaluation
			14.4.3.1 Two symmetrically interleaved VSCs
			14.4.3.2 Three symmetrically interleaved VSCs
		14.4.4 Nearest three vector modulation
	14.5 Circulating current suppression in parallel interleaved converters
		14.5.1 Galvanic isolation
		14.5.2 Coupled inductor
			14.5.2.1 Equivalent electric circuit
			14.5.2.2 Impact of the modulation scheme
		14.5.3 Common-mode inductor
		14.5.4 Integrated inductor
	14.6 Summary
	References
15 - Advanced power control of photovoltaic systems
	15.1 Introduction
	15.2 Overview of PV inverter control
		15.2.1 Control structure
		15.2.2 MPPT algorithm
			15.2.2.1 Perturb and observe MPPT
			15.2.2.2 Fractional open circuit voltage MPPT
	15.3 Requirement of advanced control functionality
		15.3.1 Grid code
			15.3.1.1 Requirements under normal grid conditions
			15.3.1.2 Requirements under abnormal grid conditions
		15.3.2 Active power control requirement
	15.4 Constant power generation control strategy
		15.4.1 Direct power control (P-CPG)
		15.4.2 Current-limiting control (I-CPG)
		15.4.3 Perturb and observe–based control (P&O-CPG)
	15.5 Benchmarking of constant power generation control strategy
		15.5.1 Dynamic responses
		15.5.2 Steady-state responses
		15.5.3 Tracking error
		15.5.4 Stability
		15.5.5 Complexity
	15.6 Summary
	References
16 - Low voltage ride-through operation of single-phase PV systems
	16.1 Introduction
	16.2 Low voltage ride-through operations
		16.2.1 LVRT control using the single-phase PQ theory
		16.2.2 LVRT control based on the power-voltage curve
	16.3 Reactive power injection strategies under LVRT
		16.3.1 Constant average active power control strategy (Const.-P)
		16.3.2 Constant active current control strategy (Const.-Id)
		16.3.3 Constant peak current control (Const.-Igmax)
	16.4 Summary
	References
17 - Grid-following and grid-forming PV and wind turbines
	17.1 Introduction
	17.2 PV and wind turbine systems
		17.2.1 PV structures
		17.2.2 Grid converter for wind turbine systems
	17.3 Grid-following power converters
		17.3.1 Definition
		17.3.2 Synchronization strategies
			17.3.2.1 Synchronous reference frame phase-locked loop
			17.3.2.2 Stationary reference frame frequency-locked loop
		17.3.3 Current controllers
			17.3.3.1 PI controller on the SRF
			17.3.3.2 Resonant controller in a stationary reference frame
	17.4 Grid-forming power converters
		17.4.1 Definition
		17.4.2 Control schemes for grid-forming power converter
		17.4.3 Droop control in grid-forming power converters
			17.4.3.1 Grid impedance influence on droop control
				17.4.3.1.1 Inductive grid
				17.4.3.1.2 Resistive grid
				17.4.3.1.3 General case
			17.4.3.2 Virtual impedance control
		17.4.4 The synchronous power controller
	17.5 Conclusions
	References
18 - Virtual inertia operation of renewables
	18.1 Introduction
	18.2 Evolution of green energy transition
		18.2.1 Low-inertia grid challenges
		18.2.2 Control of power converter–interfaced renewables
	18.3 Virtual inertia-based control
		18.3.1 Virtual synchronous machine
		18.3.2 Concepts and fundamentals
	18.4 VSM implementation
		18.4.1 NSG penetration level
		18.4.2 VSM performance
		18.4.3 Fault right through capability
	18.5 Summary and future trend
	References
19 - Virtual inertia emulating in power electronic–based power systems
	19.1 Introduction
	19.2 Inertia concept
	19.3 Inertia challenges of power electronic–based power systems
	19.4 Adaptive inertia for grid-connected VSGs
		19.4.1 VSG principle
		19.4.2 Adaptive inertia
	19.5 Simulation and experimental results
		19.5.1 Simulation results
		19.5.2 Experimental results
	19.6 Summary
	References
	Further reading
20 - Abnormal operation of wind turbine systems
	20.1 Introduction
		20.1.1 Classification of grid faults
		20.1.2 Grid code requirements on low-voltage ride-through
		20.1.3 Fundamental wind turbine configurations
	20.2 Control of type III wind turbine during grid faults
		20.2.1 Existing challenges during grid faults
			20.2.1.1 Internal challenge from DFIG configuration
			20.2.1.2 External challenge from grid codes
		20.2.2 Control strategies during symmetrical grid faults
		20.2.3 Control strategies during asymmetrical grid faults
	20.3 Control of type IV wind turbine during grid faults
		20.3.1 Modeling and control of grid-side converter
			20.3.1.1 Converter current control
			20.3.1.2 Phase-locked loop for grid synchronization
			20.3.1.3 DC-link voltage controller
		20.3.2 Symmetrical grid fault control
			20.3.2.1 Protection of DC-link capacitor through chopper control
			20.3.2.2 Verification of symmetrical fault control
			20.3.2.3 Zero-voltage ride-through capability
		20.3.3 Asymmetrical grid fault control
			20.3.3.1 Grid synchronization during asymmetrical faults
			20.3.3.2 Current-reference generation methods
			20.3.3.3 Calculation of phase current magnitude
			20.3.3.4 Selection of k1,k2,P∗,Q∗
			20.3.3.5 Verification of asymmetrical fault control
	20.4 Summary
	References
21 - Wind farm control and optimization
	21.1 Introduction
	21.2 Wind farm active dispatch
		21.2.1 Wake effect
		21.2.2 Single MPPT and global MPPT
		21.2.3 Noise impact reduction
	21.3 Wind farm reactive dispatch
		21.3.1 Regular method
		21.3.2 Loss minimization
		21.3.3 Levelized production cost minimization
	21.4 Wind farm layout optimization
		21.4.1 Topography and wind direction impact for layout
		21.4.2 Layout optimization for minimum levelized production cost
	21.5 Conclusion
	References
22 - Power converters and control of LEDs
	22.1 Introduction
	22.2 Characteristics of LEDs and drivers
		22.2.1 Physical principle of LEDs
		22.2.2 Optoelectrical properties of LEDs
			22.2.2.1 Current–voltage characteristic
			22.2.2.2 Luminous flux emission
		22.2.3 Characteristics of drivers for LEDs
	22.3 Color control with a power converter
	22.4 Efficiency and lifetime improvement
	22.5 Current sharing schemes
		22.5.1 Passive current sharing schemes
		22.5.2 Active current sharing schemes
	22.6 Reliability assessment
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z
Back Cover




نظرات کاربران