دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Frede Blaabjerg (editor)
سری:
ISBN (شابک) : 0128194324, 9780128194324
ناشر: Academic Press
سال نشر: 2021
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 215 مگابایت
در صورت تبدیل فایل کتاب Control of Power Electronic Converters and Systems: Volume 3 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کنترل مبدل ها و سیستم های الکترونیکی قدرت: دوره 3 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کنترل مبدلها و سیستمهای الکترونیک قدرت، جلد 3، موضوعات نوظهور در کنترل الکترونیک قدرت و مبدلها، از جمله تئوری پشت کنترل، و عملیات عملی، مدلسازی و کنترل پایه را بررسی میکند. مدل های سیستم قدرت این کتاب مهم ترین روش های طراحی کنترلر از جمله رویه های آنالوگ و دیجیتال را معرفی می کند. این مرجع توصیف دینامیکی رفتار ترمینال برای مبدل ها و همچنین حفظ پایداری و کیفیت توان سیستم های قدرت مدرن را توضیح می دهد. برای مهندسین در کاربردهای نوظهور مبدل های الکترونیک قدرت و کسانی که روش های طراحی کنترل را با کاربردهای مختلف در فناوری الکترونیک قدرت ترکیب می کنند مفید است.
پرداختن به فعل و انفعالات کنترل کننده - با توجه به افزایش یکپارچه سازی انرژی های تجدیدپذیر و چالش های مرتبط با پایداری و کیفیت توان - در مبدل های قدرت و اجزای غیرفعال رایج تر می شود.
Control of Power Electronic Converters and Systems, Volume 3, explores emerging topics in the control of power electronics and converters, including the theory behind control, and the practical operation, modeling, and control of basic power system models. This book introduces the most important controller design methods, including both analog and digital procedures. This reference explains the dynamic characterization of terminal behavior for converters, as well as preserving the stability and power quality of modern power systems. Useful for engineers in emerging applications of power electronic converters and those combining control design methods into different applications in power electronics technology.
Addressing controller interactions - in light of increasing renewable energy integration and related challenges with stability and power quality - is becoming more frequent in power converters and passive components.
Front Cover Control of Power Electronic Converters and Systems Control of Power Electronic Converters and Systems Copyright Contents Contributors Preface 1 - Advanced control of power electronic systems—an overview of methods 1.1 Introduction 1.2 Linear controller implementation and analysis 1.2.1 Implement PI controller 1.2.2 Implement PR controller 1.2.3 Implement repetitive controller 1.2.4 Pole placement control 1.2.5 Linear quadratic regulator 1.3 Nonlinear controller implementation and analysis 1.3.1 Hysteresis control 1.3.2 Lookup table–based direct power control 1.3.3 Model predictive control 1.3.4 Backstepping control 1.3.5 Sliding mode control 1.3.6 Feedback linearization 1.3.7 Passivity control 1.3.8 Adaptive control 1.3.9 H∞ control 1.3.10 Artificial intelligence 1.4 Summary References 2 - Robust design and passivity control methods 2.1 Introduction 2.2 State space model of power electronic systems 2.2.1 Introduction 2.2.2 Grid-connected voltage source inverter 2.2.3 An example of a VSC (STATCOM) 2.3 Robust controller design 2.3.1 Voltage-modulated direct power control 2.3.2 Tracking controller 2.3.3 Robust control design 2.3.4 Simulation results 2.4 Robust small-signal stabilization control design 2.4.1 Introduction 2.4.2 Lur’e type model 2.4.2.1 Example 1: DC/DC buck converter model 2.4.2.2 Example 2: DC microgrid model 2.4.3 Robust small-signal stability analysis problem 2.4.4 Robust stability analysis method 2.4.5 Robust stabilization control design 2.4.5.1 Example 3: robust small-signal stability of a DC microgrid 2.5 Passivity-based control design 2.5.1 Introduction 2.5.2 Port-controlled Hamiltonian system 2.5.3 Passivity-based control design in a microgrid 2.5.4 Passivity control design in STATCOM 2.6 Conclusions and future prospective Acknowledgment References 3 - Sliding mode controllers in power electronic systems 3.1 Introduction 3.2 System dynamics of a voltage source inverter 3.3 Introduction to sliding mode control 3.3.1 Reachability condition in the sliding mode control 3.3.2 Control input calculation 3.4 Classical sliding mode control 3.5 Boundary-layer sliding mode control 3.5.1 Adaptive boundary-layer sliding mode control 3.6 Adaptive sliding mode control 3.7 Integral sliding mode control 3.8 Terminal sliding mode control 3.9 Second-order sliding mode control 3.9.1 Twisting SMC 3.9.2 Super-twisting 3.9.3 Adaptive super-twisting 3.10 Comparison of different SMCs 3.11 Experimental results 3.11.1 Steady-state performance 3.11.2 Dynamic performance 3.12 Conclusions References 4 - Model predictive control of power converters, motor drives, and microgrids 4.1 Introduction on MPC 4.2 MPC for permanent-magnet synchronous motor drives 4.2.1 Model of PMSM 4.2.2 FCS-MPC for PMSM drives 4.2.3 Performance evaluations of MPC with simulations 4.2.4 Summary 4.3 MPC for microgrids 4.3.1 Dynamics and predictive model of VSC-based MG 4.3.2 MPC for robust and fast operation of an islanded AC MG 4.3.3 Dynamic stabilization of a DC MG using MPC 4.3.4 Performance evaluation with experimental results 4.3.5 Summary 4.4 MPC for renewable energy applications (PMSG wind turbine) 4.4.1 Modeling of PMSG wind turbine system with back-to-back power converter 4.4.2 Direct model predictive current control 4.4.3 FCS-MPC for three-level PMSG systems 4.5 Conclusions and future trends References 5 - Adaptive control in power electronic systems 5.1 Introduction 5.2 System dynamics on a UPS system 5.3 System identification 5.3.1 Parameters identification 5.3.1.1 Recursive least-square estimation 5.3.2 State identification 5.3.2.1 Observability condition 5.3.2.2 Luenberger observer 5.3.2.3 Kalman filter 5.3.2.4 Disturbance estimation based on an adaptive observer 5.4 Indirect adaptive predictive control 5.4.1 Experimental results 5.5 Model reference direct adaptive control of UPS 5.5.1 The outer voltage control loop 5.5.2 The inner current control loop 5.5.3 Experimental results 5.6 Conclusion References 6 - Machine learning technique for low-frequency modulation techniques in power converters 6.1 Introduction 6.2 Cascaded H-bridge active power filter configuration 6.3 ANN for the asymmetric selective harmonic current mitigation-PWM 6.4 The proposed technique simulation and experimental results 6.4.1 Simulation results 6.4.2 Experimental results 6.5 Conclusion References 7 - Overview of stability analysis methods in power electronics 7.1 Introduction 7.2 Small-signal stability analysis methods 7.2.1 Modeling of power converter 7.2.1.1 State space averaging method 7.2.1.2 Generalized state space averaging method 7.2.1.3 Harmonic state space method 7.2.1.4 Black box method 7.2.2 Eigenvalue method 7.2.2.1 Component modeling and system integration 7.2.2.2 Eigenvalue stability analysis 7.2.2.2.1 Eigenvalue analysis 7.2.2.2.2 Participation factor analysis 7.2.2.2.3 Sensitivity analysis 7.2.2.3 Verification 7.2.3 Impedance-based method 7.2.3.1 Impedance modeling 7.2.3.1.1 Impedance modeling 7.2.3.1.2 Network partitioning 7.2.3.2 Stability analysis 7.2.3.3 Verification of analysis 7.2.4 Comparison of methods 7.3 Large-signal stability analysis methods 7.3.1 Time-domain simulations 7.3.2 Lyapunov-based analytical methods 7.3.2.1 Takagi–Sugeno multimodel method 7.3.2.2 Brayton–Moser’s mixed potential 7.3.2.3 Optimal Lyapunov function generation 7.4 Case studies with practical examples 7.4.1 Small-signal stability analysis 7.4.1.1 Eigenvalue method 7.4.1.1.1 System modeling 7.4.1.2 Impedance-based method 7.4.1.2.1 Impedance modeling 7.4.1.3 Verification 7.4.2 Large-signal stability analysis on a power electronic system 7.5 Summary References 8 - Cyber security in power electronic systems 8.1 Introduction 8.2 Cyber physical architecture of power electronic converters 8.2.1 Physical stage 8.2.2 Cyber stage 8.3 Vulnerability analysis of cyber attacks on control of VSCs 8.3.1 Cyber security 8.3.2 Vulnerability assessment 8.4 Cyber attack detection and mitigation mechanisms in power electronic systems 8.4.1 Detection 8.4.2 Mitigation 8.5 Test cases 8.5.1 Test case I 8.5.2 Test case II 8.6 Conclusions and future challenges References 9 - Advanced modeling and control of voltage source converters with LCL filters 9.1 Introduction 9.2 Modeling of the VSCs with LCL filters 9.2.1 Modeling methods in balanced three-phase systems 9.2.2 Modeling methods in unbalanced three-phase systems 9.2.2.1 Generalized averaged model 9.2.2.2 Harmonic state space model 9.2.3 Simulation examples 9.3 Alternative current control of the VSCs with LCL filters 9.3.1 Control in synchronous reference (dq) frame 9.3.2 Resonance damping technique 9.3.2.1 Passive damping technique 9.3.2.2 Active damping technique using filter capacitor current feedback 9.3.2.3 Active damping technique under grid current feedback 9.3.2.4 Active damping technique under converter current feedback 9.3.3 Control under unbalanced grid voltages 9.4 Impedance-based stability analysis under weak grid conditions 9.4.1 System control of the LCL-filtered VSCs in αβ frame and dq frame 9.4.2 Impedance-based stability analysis References 10 - Phase-locked loops and their design 10.1 Introduction 10.2 PLL’s control and design 10.3 Three-phase PLLs 10.3.1 Conventional synchronous reference frame PLL 10.3.2 Moving average filter–based PLLs 10.3.3 Notch filter–based PLLs 10.3.4 Sinusoidal signal integrator–based PLLs 10.3.5 Second-order generalized integrator–based PLLs 10.3.6 Complex coefficient filter–based PLLs 10.3.7 Delayed signal cancellation–based PLLs 10.3.8 Multiple SRF filter–based PLLs 10.3.9 Other three-phase PLLs 10.3.10 Performance comparison and recommendation 10.4 Single-phase PLLs 10.4.1 Standard P-PLLs 10.4.2 Low pass filter–based P-PLLs 10.4.3 Moving average filter–based P-PLLs 10.4.4 Notch filter–based P-PLLs 10.4.5 Double-frequency and amplitude compensation–based P-PLLs 10.4.6 Modified mixer PD-Based P-PLLs 10.4.7 Transfer delayed–based PLLs 10.4.8 Inverse park transformation–based PLLs 10.4.9 Generalized integrator–based PLLs 10.4.10 Synthesis circuit PLLs 10.4.11 Performance comparison and recommendation 10.5 Summary References 11 - Stability and robustness improvement of power converters 11.1 Introduction 11.2 Stability and robustness improvement of current control 11.2.1 Small-signal modeling 11.2.1.1 Linearization of the converter power stage 11.2.1.2 Small-signal model of VSC with converter-side current control 11.2.1.3 Small-signal model of VSC with grid-side current control 11.2.2 Passivity-based stability analysis 11.2.2.1 Passivity-based stability analysis for converter-side current control 11.2.2.2 Passivity-based stability analysis for converter-side current control 11.2.3 Robustness enhancement 11.2.3.1 Time delay reduction 11.2.3.2 Design of passive filters 11.2.3.3 Active damping 11.3 Stability and robustness improvement of outer-loop control 11.3.1 Small-signal modeling 11.3.1.1 Linearization of the PLL 11.3.1.2 Small-signal model of VSC with PLL 11.3.1.3 Linearization of the DC-link voltage control 11.3.1.4 Small-signal model of VSC with DC-link voltage control loop 11.3.2 MIMO-based stability analysis 11.3.2.1 Dynamic impact of PLL 11.3.2.2 Dynamic impact of DVC 11.3.3 Robustness enhancement 11.3.3.1 PLL design 11.3.3.2 DVC design References 12 - High switching frequency three-phase current-source converters and their control 12.1 Challenges of high switching frequency CSCs control 12.1.1 Multiple timescale dynamics of high switching frequency CSCs 12.1.2 Control methods of high switching frequency CSCs 12.2 Stability analysis of the single-loop DC-link current control 12.2.1 Small-signal modeling 12.2.2 Stable region of single-loop DC-link current control 12.2.3 Experimental validation 12.3 Active damping methods for high switching frequency CSCs 12.3.1 Virtual impedance analysis 12.3.1.1 Capacitor-voltage feedback (Fig. 12.12) 12.3.1.2 Capacitor-current feedback (Fig. 12.13) 12.3.1.3 Inductor-current feedback (Fig. 12.14) 12.3.1.4 Time delay effect on virtual impedance 12.3.2 Experimental validation of active damping 12.3.2.1 Capacitor-voltage feedback (see Fig. 12.12) 12.3.2.2 Capacitor-current feedback (see Fig. 12.13) 12.3.2.3 Inductor-current feedback (see Fig. 12.14) 12.4 Summary References 13 - High-power current source converters 13.1 Introduction 13.2 Current source converters and applications 13.2.1 Thyristor-based technology 13.2.2 PWM CSC-based medium-voltage drives 13.2.3 More potential application 13.3 Parallel CSC system and modulation strategies 13.3.1 Parallel CSC topology 13.3.2 CSC modulation strategies 13.3.2.1 Space vector modulation 13.3.2.2 Selective harmonic elimination 13.3.2.3 Direct duty-ratio pulse width modulation 13.3.2.4 Comparison of different CSC modulations 13.4 Parallel CSC and circuit analysis 13.4.1 CM loop circuit of parallel CSC 13.4.2 DC-link circuit of parallel CSC 13.5 DC current balance and CMV reduction methods 13.5.1 SVM-based methods 13.5.1.1 Interleaved SVM 13.5.1.2 Multilevel SVM 13.5.2 Carrier-shifted SPWM-based methods 13.5.3 Case study results 13.6 Conclusions References 14 - Parallel operation of power converters and their filters 14.1 Introduction 14.2 Circulating current modeling 14.2.1 Parallel converters with a common DC bus 14.2.1.1 Impact of the modulator mismatch 14.2.1.2 Impact of the impedance mismatch 14.2.2 Parallel converters with separate DC bus 14.3 Circulating current control 14.3.1 Current sharing schemes 14.3.2 Droop control scheme 14.3.3 Zero vector dwell time control 14.4 Harmonic performance improvement through interleaved operation 14.4.1 Modulation of parallel interleaved converters 14.4.2 Symmetrically interleaved converters 14.4.3 Harmonic performance evaluation 14.4.3.1 Two symmetrically interleaved VSCs 14.4.3.2 Three symmetrically interleaved VSCs 14.4.4 Nearest three vector modulation 14.5 Circulating current suppression in parallel interleaved converters 14.5.1 Galvanic isolation 14.5.2 Coupled inductor 14.5.2.1 Equivalent electric circuit 14.5.2.2 Impact of the modulation scheme 14.5.3 Common-mode inductor 14.5.4 Integrated inductor 14.6 Summary References 15 - Advanced power control of photovoltaic systems 15.1 Introduction 15.2 Overview of PV inverter control 15.2.1 Control structure 15.2.2 MPPT algorithm 15.2.2.1 Perturb and observe MPPT 15.2.2.2 Fractional open circuit voltage MPPT 15.3 Requirement of advanced control functionality 15.3.1 Grid code 15.3.1.1 Requirements under normal grid conditions 15.3.1.2 Requirements under abnormal grid conditions 15.3.2 Active power control requirement 15.4 Constant power generation control strategy 15.4.1 Direct power control (P-CPG) 15.4.2 Current-limiting control (I-CPG) 15.4.3 Perturb and observe–based control (P&O-CPG) 15.5 Benchmarking of constant power generation control strategy 15.5.1 Dynamic responses 15.5.2 Steady-state responses 15.5.3 Tracking error 15.5.4 Stability 15.5.5 Complexity 15.6 Summary References 16 - Low voltage ride-through operation of single-phase PV systems 16.1 Introduction 16.2 Low voltage ride-through operations 16.2.1 LVRT control using the single-phase PQ theory 16.2.2 LVRT control based on the power-voltage curve 16.3 Reactive power injection strategies under LVRT 16.3.1 Constant average active power control strategy (Const.-P) 16.3.2 Constant active current control strategy (Const.-Id) 16.3.3 Constant peak current control (Const.-Igmax) 16.4 Summary References 17 - Grid-following and grid-forming PV and wind turbines 17.1 Introduction 17.2 PV and wind turbine systems 17.2.1 PV structures 17.2.2 Grid converter for wind turbine systems 17.3 Grid-following power converters 17.3.1 Definition 17.3.2 Synchronization strategies 17.3.2.1 Synchronous reference frame phase-locked loop 17.3.2.2 Stationary reference frame frequency-locked loop 17.3.3 Current controllers 17.3.3.1 PI controller on the SRF 17.3.3.2 Resonant controller in a stationary reference frame 17.4 Grid-forming power converters 17.4.1 Definition 17.4.2 Control schemes for grid-forming power converter 17.4.3 Droop control in grid-forming power converters 17.4.3.1 Grid impedance influence on droop control 17.4.3.1.1 Inductive grid 17.4.3.1.2 Resistive grid 17.4.3.1.3 General case 17.4.3.2 Virtual impedance control 17.4.4 The synchronous power controller 17.5 Conclusions References 18 - Virtual inertia operation of renewables 18.1 Introduction 18.2 Evolution of green energy transition 18.2.1 Low-inertia grid challenges 18.2.2 Control of power converter–interfaced renewables 18.3 Virtual inertia-based control 18.3.1 Virtual synchronous machine 18.3.2 Concepts and fundamentals 18.4 VSM implementation 18.4.1 NSG penetration level 18.4.2 VSM performance 18.4.3 Fault right through capability 18.5 Summary and future trend References 19 - Virtual inertia emulating in power electronic–based power systems 19.1 Introduction 19.2 Inertia concept 19.3 Inertia challenges of power electronic–based power systems 19.4 Adaptive inertia for grid-connected VSGs 19.4.1 VSG principle 19.4.2 Adaptive inertia 19.5 Simulation and experimental results 19.5.1 Simulation results 19.5.2 Experimental results 19.6 Summary References Further reading 20 - Abnormal operation of wind turbine systems 20.1 Introduction 20.1.1 Classification of grid faults 20.1.2 Grid code requirements on low-voltage ride-through 20.1.3 Fundamental wind turbine configurations 20.2 Control of type III wind turbine during grid faults 20.2.1 Existing challenges during grid faults 20.2.1.1 Internal challenge from DFIG configuration 20.2.1.2 External challenge from grid codes 20.2.2 Control strategies during symmetrical grid faults 20.2.3 Control strategies during asymmetrical grid faults 20.3 Control of type IV wind turbine during grid faults 20.3.1 Modeling and control of grid-side converter 20.3.1.1 Converter current control 20.3.1.2 Phase-locked loop for grid synchronization 20.3.1.3 DC-link voltage controller 20.3.2 Symmetrical grid fault control 20.3.2.1 Protection of DC-link capacitor through chopper control 20.3.2.2 Verification of symmetrical fault control 20.3.2.3 Zero-voltage ride-through capability 20.3.3 Asymmetrical grid fault control 20.3.3.1 Grid synchronization during asymmetrical faults 20.3.3.2 Current-reference generation methods 20.3.3.3 Calculation of phase current magnitude 20.3.3.4 Selection of k1,k2,P∗,Q∗ 20.3.3.5 Verification of asymmetrical fault control 20.4 Summary References 21 - Wind farm control and optimization 21.1 Introduction 21.2 Wind farm active dispatch 21.2.1 Wake effect 21.2.2 Single MPPT and global MPPT 21.2.3 Noise impact reduction 21.3 Wind farm reactive dispatch 21.3.1 Regular method 21.3.2 Loss minimization 21.3.3 Levelized production cost minimization 21.4 Wind farm layout optimization 21.4.1 Topography and wind direction impact for layout 21.4.2 Layout optimization for minimum levelized production cost 21.5 Conclusion References 22 - Power converters and control of LEDs 22.1 Introduction 22.2 Characteristics of LEDs and drivers 22.2.1 Physical principle of LEDs 22.2.2 Optoelectrical properties of LEDs 22.2.2.1 Current–voltage characteristic 22.2.2.2 Luminous flux emission 22.2.3 Characteristics of drivers for LEDs 22.3 Color control with a power converter 22.4 Efficiency and lifetime improvement 22.5 Current sharing schemes 22.5.1 Passive current sharing schemes 22.5.2 Active current sharing schemes 22.6 Reliability assessment References Index A B C D E F G H I J K L M N O P Q R S T U V W Z Back Cover