ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Continuous processing in pharmaceutical manufacturing

دانلود کتاب فرآوری مستمر در تولید دارو

Continuous processing in pharmaceutical manufacturing

مشخصات کتاب

Continuous processing in pharmaceutical manufacturing

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9783527673681, 3527673717 
ناشر: Wiley-VCH 
سال نشر: 2015 
تعداد صفحات: 531 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 32 مگابایت 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 15


در صورت تبدیل فایل کتاب Continuous processing in pharmaceutical manufacturing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فرآوری مستمر در تولید دارو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب


Content:

List of Contributors XVII

Preface XXIII

1 Proteins Separation and Purification by Expanded Bed Adsorption and Simulated Moving Bed Technology 1 Ping Li, Pedro Ferreira Gomes, Jose M. Loureiro, and Alirio E. Rodrigues

1.1 Introduction 1

1.2 Protein Capture by Expanded Bed Technology 3

1.2.1 Adsorbent Materials 3

1.2.2 Expanded Bed Adsorption/Desorption of Protein 10

1.2.3 Modeling of the Expanded Bed 13

1.3 Proteins Separation and Purification by Salt Gradient Ion Exchange SMB 15

1.3.1 Adsorption Isotherms and Kinetics of BSA and Myoglobin on Ion Exchange Resins 16

1.3.2 Salt Gradient Formation and Process Design for IE-SMB Chromatography 20

1.3.3 Separation Region of Salt Gradient IE-SMB Chromatography 21

1.3.4 Proteins Separation and Purification in Salt Gradient IE-SMB with Open Loop Configuration 24

1.4 Conclusion 26

References 27

2 BioSMB Technology as an Enabler for a Fully Continuous Disposable Biomanufacturing Platform 35 Marc Bisschops

2.1 Introduction 35

2.2 Integrated Continuous Bioprocessing 36

2.3 Multicolumn Chromatography 39

2.4 BioSMB Technology 40

2.5 Fully Disposable Continuous Processing 44

2.6 Case Studies 46

2.7 Regulatory Aspects 47

2.8 Conclusions 50

References 51

3 Impact of Continuous Processing Techniques on Biologics Supply Chains 53 Aloke Das

3.1 Introduction 53

3.1.1 The Biologics Industry 53

3.1.2 The Biologics Value Chain 54

3.1.3 Downstream Purification Costs 54

3.2 Chromatography Techniques Used in Downstream Purification of Biomolecules 55

3.2.1 Need for Continuous Manufacturing in Downstream Purification 56

3.2.2 The Multicolumn Countercurrent Solvent Gradient Purification Chromatography System 58

3.3 Next-Generation Biologic Products Bispecific Monoclonal Antibodies 59

3.3.1 Major Biopharma Companies and Their Interest in Bispecific Mabs 59

3.3.2 Challenges in Purification of Bispecific Monoclonal Antibodies 60

3.4 Improving the Downstream Processing of Bispecific Mabs by Introduction of MCSGP in the Value Chain 61

3.4.1 Advantages of Utilizing MCSGP Process in Bispecific Mabs Purification as Compared to Batch Chromatography 61

3.4.2 Impact of MCSGP System on Biologic Supply Chains 62

3.4.3 Impact on Patent Approval Structure of Biologic Drugs 62

3.4.3.1 For a Manufacturer Who Already has a Biologic Drug in the Market 62

3.4.3.2 For a Manufacturer Who is Developing a Biologic Drug 62

3.4.4 Impact on Big Biopharma Companies 63

3.4.5 Impact on the Chromatography Market 64

3.4.6 Limitations of the MCSGP System 64

3.5 Conclusion 64

3.6 Further Research 65

Acknowledgments 66

3.A Appendix/Additional Information 66

3.A.1 Regulatory Structure for Bispecific Monoclonal Antibodies 67

3.A.1.1 Regulatory Compliance Comparison between US, EU, and Emerging Economies 67

References 68

4 Integrating Continuous and Single-Use Methods to Establish a New Downstream Processing Platform for Monoclonal Antibodies 71 Christopher Gillespie, Mikhail Kozlov, Michael Phillips, Ajish Potty, Romas Skudas, Matthew Stone, Alex Xenopoulos, Alison Dupont, Jad Jaber, and William Cataldo

4.1 Introduction 71

4.2 Harvest and Clarification 74

4.2.1 The Challenge and Technology Selection 74

4.2.1.1 Centrifugation 76

4.2.1.2 Filtration 76

4.2.1.3 Impurity Precipitation 77

4.2.2 Summary 77

4.3 Capture 78

4.3.1 Background 78

4.3.1.1 Protein A Chromatography 78

4.3.2 Chromatographic Methods 79

4.3.2.1 Slurried Bed Methods 79

4.3.2.2 Continuous Chromatography 79

4.3.3 Capture Case Studies 82

4.3.3.1 Continuous Protein A Chromatography Capture Case Study 82

4.3.3.2 Effect of Clarification Method on Protein A Performance 83

4.4 Polishing 84

4.4.1 Background 84

4.4.2 Technology Selection Strategy 86

4.4.3 Complete Flow-Through Polishing Case Study 87

4.5 Cost of Goods Analysis 89

4.5.1 Methodology 89

4.5.2 Clarification 89

4.5.3 Capture 90

4.5.4 Polishing 91

4.5.5 Overall 91

4.6 Summary 92

References 93

5 Modeling of Protein Monomer/Aggregate Purification by Hydrophobic Interaction Chromatography: Application to Column Design and Process Optimization 97 Mark-Henry Kamga, Hae Woo Lee, Namjoon Kim, and Seongkyu Yoon

5.1 Introduction 97

5.2 Mathematical Model 99

5.2.1 The Rate-Limiting Step in the HIC Process 99

5.2.2 Dimensional Considerations 100

5.2.2.1 Adsorption Capacity vs. Concentration of Vacant Sites (qmi vs. Cvi) 100

5.2.2.2 Concentration of Protein Adsorbed on Resin (qi vs. Cia) 100

5.2.3 Mathematical Model 101

5.3 Experimentation 103

5.3.1 Protein Solutions 103

5.3.2 Determination of Adsorption and Desorption Kinetic Constants 104

5.3.3 Column Chromatography 104

5.4 Results and Discussion 105

5.4.1 Kinetic Constants 105

5.4.2 Protein Denaturation 107

5.4.3 Model vs. Experimental Results 108

5.4.4 Applications 109

5.5 Conclusion 112

Acknowledgments 112

References 113

6 Continuous Animal Cell Perfusion Processes: The First Step Toward Integrated Continuous Biomanufacturing 115 Leda R. Castilho

6.1 Introduction 115

6.2 The Basics of Perfusion Processes 116

6.3 Cell Banking and Inoculum Development in the Context of Perfusion Processes 117

6.4 Culture Conditions 120

6.5 Cell Retention Devices 125

6.5.1 Gravitational Settlers 126

6.5.2 Centrifuges 130

6.5.3 Hydrocyclones 131

6.5.4 Acoustic (Ultrasonic) Separators 134

6.5.5 Tangential Flow-Filtration 134

6.5.6 ATF Systems 136

6.5.7 Floating Membrane Devices 138

6.5.8 Spin-Filters 138

6.5.9 Rotating Cylindrical Filters (Vortex-Flow Filters or External Spin-Filters) 140

6.5.10 Rotating Disc Filters (Controlled-Shear Filters) 141

6.6 Integrated Perfusion Purification Processes for Continuous Biomanufacturing 142

6.7 Concluding Remarks 144

References 145

7 Perfusion Process Design in a 2D Rocking Single-Use Bioreactor 155 Nico M.G. Oosterhuis

7.1 Introduction 155

7.2 Production Costs 155

7.3 Equipment Requirements for a Single-Use Perfusion Process 157

7.4 Testing Results Single-Use Perfusion Process 159

7.5 Simplified Seeding Process 161

7.6 Future Outlook 163

References 163

8 Advances in the Application of Perfusion Technologies to Drosophila S2 Insects Cell Culture 165 Lars Poulsen and Willem A. de Jongh

8.1 Introduction 165

8.2 Case Study 1: Acoustic Separation 167

8.2.1 The Perfusion Setup (BioSep) 167

8.2.2 Results and Discussion 168

8.2.2.1 Development 168

8.2.2.2 Cell Count in the Bioreactor 168

8.2.2.3 Effects of BioSep Settings on Cell Loss and Viability 169

8.2.2.4 Controlling the Cell Concentration Through Bleed Rate Control 169

8.2.2.5 Effect of Total Dilution Rate on Culture Viability 170

8.2.2.6 Development of the Perfusion Rate Profile 170

8.2.2.7 Initial Testing of Robustness of Upstream Process in 1.5 l Fermentations 170

8.2.2.8 Scaling Up and Consistency in 4.5 l Fermentations 171

8.2.2.9 Process Scale-Up 174

8.2.3 Conclusions for Case Study 1 174

8.3 Case Study 2: ATF-Based Cell Retention 176

8.3.1 ATF Technology 176

8.3.2 Methods 177

8.3.3 Results 177

8.3.3.1 Cell Counts Achieved Using Perfusion Technology 177

8.3.3.2 Effect of Feed Strategy 178

8.3.3.3 Yield Improvements Achieved Using Fed-Batch and Concentrated Perfusion 179

8.3.3.4 Protein Stability 179

8.3.4 Conclusions for Case Study 2 180

8.4 Final Remarks 181

Acknowledgments 181

References 181

9 Single-Use Systems Support Continuous Bioprocessing by Perfusion Culture 183 William G. Whitford

9.1 Introduction 183

9.2 Potential Advantages in Continuous Processing 187

9.2.1 Improved Product Quality 187

9.2.2 Ease in Process Development 188

9.2.3 Improved Scalability 188

9.2.4 Increased Profitability 189

9.2.5 Sustainability 190

9.3 Challenges in Adoption of Continuous Processing 190

9.4 Continuous Biomanufacturing 194

9.5 Single-Use Systems 196

9.6 Hybrid Systems 202

9.7 Perfusion Culture 203

9.8 Single-Use in Continuous Biomanufacturing 205

9.9 Roller Bottles 213

9.10 Mechanically Agitated Suspension Reactors 213

9.11 Hollow Fiber Media Exchange 214

9.12 Packed Bed Bioreactors 215

9.13 Hollow Fiber Perfusion Bioreactors 217

9.14 Continuous Flow Centrifugation 218

9.15 Acoustic Wave Separation 220

9.16 Conclusion 222

References 222

10 Multicolumn Countercurrent Gradient Chromatography for the Purification of Biopharmaceuticals 227 Thomas Muller-Spath and Massimo Morbidelli

10.1 Introduction to Multicolumn Countercurrent Chromatography 227

10.2 Introduction to Multicolumn Simulated Moving Bed (SMB) Chromatography 230

10.3 Capture Applications 232

10.3.1 Introduction 232

10.3.2 Process Principle 234

10.3.3 Application Examples 236

10.4 Polishing Applications 237

10.4.1 Introduction 237

10.4.2 Multicolumn Countercurrent Solvent Gradient Purification Principle 239

10.4.3 Multicolumn Countercurrent Solvent Gradient Purification Process Design 242

10.4.4 Multicolumn Countercurrent Solvent Gradient Purification Case Study 243

10.5 Discovery and Development Applications 247

10.6 Scale-Up of Multicolumn Countercurrent Chromatography 249

10.7 Multicolumn Countercurrent Chromatography as Replacement for Batch Chromatography Unit Operations 249

10.8 Multicolumn Countercurrent Chromatography in Continuous Manufacturing 251

10.9 Process Analytical Tools for Multicolumn Countercurrent Processes 252

References 253

11 Monoclonal Antibody Continuous Processing Enabled by Single Use 255 Mark Brower, Ying Hou, and David Pollard

11.1 Introduction 255

11.1.1 Single-Use Revolution to Enable Process Intensification and Continuous Processing 256

11.1.2 Principles of Continuous Multicolumn Chromatography for Biological Production (BioSMB) 260

11.2 Continuous Downstream Processing for Monoclonal Antibodies Unit Operation Development 263

11.2.1 Surge Vessels and Balancing Flows 265

11.2.2 Primary Recovery: Centrifugation and Depth Filtration 266

11.2.3 Bulk Purification: Continuous Multicolumn Chromatography BioSMB Protein A Capture and Viral Inactivation 270

11.2.3.1 Protein A Loading Zone Optimization 271

11.2.3.2 Protein A Elution Zone Considerations 275

11.2.3.3 Viral Inactivation 277

11.2.4 Fine Purification: Flow-Through Anion Exchange Chromatography (AEX) 280

11.2.4.1 Effects of Sample Flow Rate on AEX Membrane Chromatography 281

11.2.4.2 Effect of Sample Loading Amount on AEX Membrane Chromatography 281

11.2.4.3 Scaling-Up Membrane Chromatography for Continuous Processing 283

11.2.5 Fine Purification: Continuous Multicolumn Chromatography BioSMB Cation Exchange Chromatography 284

11.2.5.1 Cation Exchange Loading Zone Optimization 284

11.2.5.2 Cation Exchange Elution Zone Considerations 285

11.2.6 Formulation: Continuous Ultrafiltration 287

11.3 Pilot-Scale Demonstration of the Integrated Continuous Process 291

11.4 Summary 293

References 294

12 Continuous Production of Bacteriophages 297 Ales Podgornik, Nika Janez , Franc Smrekar, and Matjaz Peterka

12.1 Bacteriophages 297

12.1.1 Life Cycle 299

12.1.2 Determination of Bacteriophage Properties 303

12.2 Bacteriophage Cultivation 305

12.2.1 Chemostat 306

12.2.2 Cellstat 310

12.2.3 Cellstat Productivity 314

12.2.4 Bacteriophage Selection 322

12.2.5 Technical Challenges 323

12.3 Continuous Purification of Bacteriophages 325

12.3.1 Centrifugation 326

12.3.2 Precipitation and Flocculation 326

12.3.3 Filtration 327

12.3.4 Chromatographic and Other Adsorption Methods 328

12.4 Conclusions 329

References 329

13 Very High Cell Density in Perfusion of CHO Cells by ATF, TFF, Wave Bioreactor, and/or CellTank Technologies Impact of Cell Density and Applications 339 Veronique Chotteau, Ye Zhang, and Marie-Francoise Clincke

13.1 Introduction 339

13.2 Equipment 340

13.3 Results and Discussion 342

13.3.1 Perfusion Using ATF or TFF in Wave-Induced Bioreactor 342

13.3.1.1 Cell Growth 342

13.3.1.2 IgG Production 344

13.3.2 Perfusion Using CellTank 346

13.3.2.1 Cell Growth 346

13.3.2.2 IgG Production 347

13.3.3 Very High Cell Density 347

13.3.4 Cryopreservation from Very High Cell Density Perfusion 350

13.4 Conclusions 353

Acknowledgments 354

References 354

14 Implementation of CQA (Critical Quality Attribute) Based Approach for Development of Biosimilars 357 Sanjeev K. Gupta

14.1 Background 357

14.2 Biosimilar Product Development 358

14.3 Attributes/Parameters in Biopharmaceuticals 359

14.3.1 Critical Quality Attributes 359

14.3.2 Critical Process Parameters (CPP) 359

14.3.3 The ICH Q8 Minimal Approach to Pharmaceutical Development 359

14.3.4 Quality-by-Design 360

14.4 Quality Attributes and Biosimilars Development 361

14.5 Quality, Safety, and Efficacy of Biosimilars 362

14.6 Implementing CQA Approach for Biosimilar Development 364

14.6.1 Identification of the CQA 364

14.6.2 CQA-Based Clone Selection and Upstream Process Development 365

14.6.3 Factors Affecting CQAs of the Biologics 366

14.6.3.1 Expression Host and Recombinant Cell Line 366

14.6.3.2 Process Related 367

14.6.4 Protein Production Host and CQA 368

14.6.4.1 Cell Line Changes and CQA 370

14.6.4.2 Host Cell Line and Clone Selection Criteria 370

14.6.5 Sequence Variants Identification by CQA 371

14.6.6 Incomplete Processing of Signal Sequences and CQA 373

14.6.7 Upstream Process Impact on Product Quality Attributes 374

14.6.7.1 Bioreactor Optimization and Scale Up 374

14.6.8 CQA in Purification and Formulation 379

14.6.8.1 Downstream Processing of Biosimilars 379

14.6.8.2 Downstream Processing and CQA 380

14.6.9 CQAs in Formulation and Stability 381

14.6.9.1 Formulation and Quality Attributes 381

14.6.9.2 Stability and Quality Attributes 382

14.7 Summary 382

References 383

15 Automated Single-Use Centrifugation Solution for Diverse Biomanufacturing Process 385 Sunil Mehta

15.1 Introduction 385

15.2 Separation by Centrifugation 385

15.3 Separation by Filtration 386

15.4 Downstream Process Challenges of High Cell Density Cultures 386

15.5 Single-Use Centrifugation 387

15.6 kSep Technology 387

15.7 kSep System Configuration 390

15.8 Low-Shear Process 392

15.9 Perfusion 393

15.10 Concentration, Media Replacement, and Harvest of Cells 395

15.11 Continuous Harvest Clarification 397

15.12 Separation of Cells from Microcarriers 398

15.13 Summary 399

References 399

16 The Review of Flexible Production Platforms for the Future 401 Maik W. Jornitz

16.1 Introduction 401

16.2 Today s Processing Technology Advances 402

16.2.1 Single-Use Liquid Hold and Mixing Bags 402

16.2.2 Filtration and Purification Technologies 406

16.2.3 Product and Component Transfer 413

16.2.4 Aseptic Fluid Connections and Disconnections 415

16.2.5 Single-Use Final Filling Systems 417

16.3 Todays Facility Designs 418

16.3.1 Construction and Design Types 418

16.3.2 Process Location and Flow 422

16.4 Future Processing and Facility Requirements 424

16.4.1 Upstream Technologies 424

16.4.2 Downstream Technologies 426

16.4.3 Single-Use Engineering and Design 427

16.4.4 Facilities and Process Design 428

References 431

17 Evaluating the Economic and Operational Feasibility of Continuous Processes for Monoclonal Antibodies 433 Suzanne S. Farid, James Pollock, and Sa V. Ho

17.1 Introduction 433

17.2 Background on Continuous Processing 434

17.2.1 Perfusion Culture 434

17.2.2 Semicontinuous Chromatography 436

17.3 Tool Description 438

17.4 Case Study 1: Fed-batch Versus Perfusion Culture for Commercial mAb Production 440

17.5 Case Study 2: Semicontinuous Affinity Chromatography for Clinical and Commercial Manufacture 446

17.6 Case Study 3: Integrated Continuous Processing Flowsheets 450

17.7 Conclusions 452

Acknowledgments 452

References 453

18 Opportunities and Challenges for the Implementation of Continuous Processing in Biomanufacturing 457 Sadettin S. Ozturk

18.1 Introduction 457

18.2 A Brief History of Continuous Processing in Biomanufacturing 458

18.3 Opportunities for Continuous Processing in Biomanufacturing 459

18.3.1 Higher Process Yields 459

18.3.2 Higher Process Efficiencies 461

18.3.3 Compact and Flexible Facilities 461

18.3.4 Stable and Consistent Production 462

18.3.5 Better Product Quality 462

18.4 Challenges for Implementing Continuous Processing in Biomanufacturing 462

18.4.1 Process Complexity 463

18.4.1.1 Cell Retention 463

18.4.1.2 High Cell Density 466

18.4.1.3 Longer Run Times 467

18.4.2 Process Scalability in a Continuous Perfusion Process 470

18.4.2.1 Scale and Capacity Limitations 470

18.4.2.2 Process Scale-up 471

18.4.3 Process Consistency and Control 473

18.4.4 Process Characterization and Validation 474

18.4.4.1 Complexity of a Scale-down Model for a Perfusion Process 474

18.4.4.2 Process Optimization and Characterization for a Perfusion Process 475

18.4.4.3 Process Validation 475

18.5 Conclusions 476

Acknowledgment 476

References 476

19 The Potential Impact of Continuous Processing on the Practice and Economics of Biopharmaceutical Manufacturing 479 L. Richard Stock, Marc Bisschops, and Thomas C. Ransohoff

19.1 Introduction 479

19.2 Background (Review of Status Quo How We Make Biopharmaceutical Products Today) 480

19.3 The Rationale for Continuous Processing 483

19.4 The Obstacles for Implementation of Continuous Processing for Biopharmaceuticals 485

19.5 The Potential Impact of Continuous Manufacturing on Process Economics 487

19.6 The Potential Impact of Continuous Processing on Biopharmaceutical Manufacturing Practices 490

19.7 Summary 492

References 492

Index 495





نظرات کاربران