دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Jeyakumar V., Rubinov A. (eds.) سری: Applied Optimization ISBN (شابک) : 0387267697, 9780387267692 ناشر: Springer سال نشر: 2005 تعداد صفحات: 454 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Continuous optimization: Current trends and modern applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بهینه سازی مداوم: روندهای فعلی و برنامه های مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
جستجو برای بهترین عملکرد ممکن در ذات انسان است. افراد، بنگاهها و دولتها به دنبال راهحلهای بهینه، یعنی بهترین راهحل ممکن برای مشکلاتی هستند که با آن مواجه میشوند. بدیهی است که بهینه سازی مستمر نقش مهمی در مدیریت روزمره و تصمیمات فنی در علم، مهندسی و تجارت ایفا می کند. مجموعه 16 مقاله داوری در این کتاب، موضوعات متنوعی را پوشش می دهد و تصویر خوبی از تحقیقات اخیر در بهینه سازی مستمر ارائه می دهد. بخش اول کتاب مقالات نظرسنجی اساسی را در تعدادی از حوزه های موضوعی مهم بهینه سازی مستمر ارائه می دهد. اکثر مقالات بخش دوم نتایجی را در مورد جنبه های نظری و همچنین روش های عددی بهینه سازی پیوسته ارائه می دهند. مقالات بخش سوم عمدتاً به کاربردهای بهینه سازی پیوسته مربوط می شود. از این رو، این کتاب منبع اطلاعات ارزشمند دیگری برای اساتید، دانشجویان و محققانی خواهد بود که از بهینهسازی مستمر برای مدلسازی و حل مسائل استفاده میکنند.
The search for the best possible performance is inherent in human nature. Individuals, enterprises and governments are seeking optimal, that is, the best possible, solutions for problems that they meet. Evidently, continuous optimization plays an increasingly significant role in everyday management and technical decisions in science, engineering and commerce. The collection of 16 refereed papers in this book covers a diverse number of topics and provides a good picture of recent research in continuous optimization. The first part of the book presents substantive survey articles in a number of important topic areas of continuous optimization. Most of the papers in the second part present results on the theoretical aspects as well as numerical methods of continuous optimization. The papers in the third part are mainly concerned with applications of continuous optimization. Hence, the book will be an additional valuable source of information to faculty, students, and researchers who use continuous optimization to model and solve problems.
Contents......Page 6
Preface......Page 13
List of Contributors......Page 14
Part I: Surveys......Page 18
1 Introduction......Page 19
2 Linear semi-infinite systems......Page 21
3 Applications......Page 24
4 Numerical methods......Page 27
5 Perturbation analysis......Page 29
References......Page 33
1 Introduction......Page 39
2 Constrained Interpolation in Hilbert Space......Page 42
3 Nonsmooth Functions and Equations......Page 47
4 Newton\'s Method and Convergence Analysis......Page 49
5 Open Problems......Page 61
References......Page 62
Optimization Methods in Direct and Inverse Scattering......Page 66
1 Introduction......Page 67
2 Identification of small subsurface inclusions......Page 69
3 Identification of layers in multilayer particles......Page 78
4 Potential scattering and the Stability Index method......Page 85
5 Inverse scattering problem with fixed-energy data......Page 95
6 Obstacle scattering by the Modified Rayleigh Conjecture (MRC) method......Page 101
7 Support Function Method for inverse obstacle scattering problems......Page 110
8 Analysis of a Linear Sampling method......Page 117
References......Page 120
1 Introduction......Page 126
2 Complexity of two-stage stochastic programs......Page 129
3 What is easy and what is difficult in stochastic programming?......Page 137
4 Some novel approaches......Page 148
References......Page 159
1 Introduction......Page 162
2 A solver suite approach to practical global optimization......Page 167
3 Modeling systems and user demands......Page 169
4 Software implementation examples......Page 171
6 Conclusions......Page 183
References......Page 184
1 Introduction......Page 189
2 Preliminaries......Page 191
3 Max-min separability......Page 194
4 Minimization of the error function......Page 205
5 Results of numerical experiments......Page 214
6 Conclusions and further work......Page 218
References......Page 219
1 Introduction......Page 222
2 Support functions and lower approximations......Page 223
3 Optimization: the Cutting Angle method......Page 230
4 Random variate generation: acceptance/ rejection......Page 237
5 Scattered data interpolation: Lipschitz approximation......Page 248
References......Page 257
Part II: Theory and Numerical Methods......Page 262
1 Introduction......Page 263
2 Global Optimality Condition......Page 264
3 Approximation Techniques of the Level Set......Page 266
4 Algorithms and their Convergence......Page 274
5 Numerical Examples......Page 282
References......Page 284
1 Introduction......Page 286
2 Monotonicity and convexity......Page 287
3 Monotone optimization and concave minimization......Page 292
4 Polyblock outer approximation method......Page 294
5 A hybrid method......Page 297
6 Conclusions......Page 299
References......Page 300
1 Introduction and Preliminaries......Page 303
2 Generalized Lagrange Multipliers......Page 306
3 Special Cases and Applications......Page 314
4 Directionally Differentiable Problems with DSL-approximates......Page 324
References......Page 327
1 Introduction......Page 330
2 Preliminaries......Page 332
3 A Sum Theorem for Slice Convergence......Page 336
4 Saddle–point Convergence in Fenchel Duality......Page 345
References......Page 350
1 Introduction......Page 351
2 Preliminaries......Page 352
3 Plus-Minkowski gauge and plus-weak Pareto point for a downward set......Page 355
4 X[sub(φ)]-subdifferential of a topical function......Page 357
5 Fenchel-Moreau conjugates with respect to φ......Page 361
6 Conjugate of type Lau with respect to φ......Page 365
References......Page 368
Part III: Applications......Page 370
1 Introduction......Page 371
2 Relationship between two variables: relational elasticity......Page 373
3 Some examples for calculating relational elasticities......Page 375
4 Dynamical systems......Page 376
5 Classification Algorithm based on a dynamical systems approach......Page 380
6 Algorithm for global optimization......Page 383
7 Results of numerical experiments......Page 386
8 Conclusions and future work......Page 387
References......Page 389
1 Introduction......Page 392
2 Single–Rumour Process and Preliminaries......Page 394
3 Scenario 1......Page 396
4 Monotonicity of ξ......Page 400
5 Convexity of ξ......Page 404
6 Scenario 2......Page 407
7 Comparison of Scenarios......Page 410
References......Page 411
1 Introduction......Page 413
2 A class of sum-min functions......Page 414
3 Examples......Page 415
4 Minimization of sum-min functions belonging to class F......Page 419
5 Minimization of generalized cluster function......Page 421
6 Numerical experiments with generalized cluster function......Page 423
7 Skeletons......Page 428
8 Conclusions......Page 434
References......Page 437
1 Introduction......Page 439
2 Problem formulation......Page 440
3 Intuitive calculation of the invariant probability......Page 442
4 Existence of the inverse matrices......Page 444
5 Probabilistic analysis......Page 445
7 Extension of the fundamental ideas......Page 449
References......Page 454