دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: L. Lorentzen, H. Waadeland سری: Studies in Computational Mathematics 3 ISBN (شابک) : 9780444892652, 0444892656 ناشر: North-Holland (Elsevier) سال نشر: 1992 تعداد صفحات: 623 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Continued Fractions with Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ادامه کسری با برنامه های کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هدف این کتاب دو نوع خواننده است: اولاً افرادی که در ریاضیات یا نزدیک به آن کار می کنند و در مورد کسرهای ادامه دار کنجکاو هستند. و ثانیاً، دانشجویان ارشد یا فارغ التحصیلانی که می خواهند مقدمه ای گسترده با نظریه تحلیلی کسرهای ادامه دار داشته باشند. این کتاب حاوی چندین نتیجه اخیر و زوایای رویکرد جدید است و بنابراین باید مورد توجه محققان در سراسر این حوزه باشد. پنج فصل اول شامل مقدمه ای بر نظریه پایه است، در حالی که هفت فصل آخر کاربردهای متنوعی را ارائه می دهد. در نهایت، یک ضمیمه تعداد زیادی از بسط کسری ادامه دار ویژه را نشان می دهد. این کتاب بسیار خواندنی نیز حاوی مثال ها و مشکلات بسیار ارزشمندی است.
This book is aimed at two kinds of readers: firstly, people working in or near mathematics, who are curious about continued fractions; and secondly, senior or graduate students who would like an extensive introduction to the analytic theory of continued fractions. The book contains several recent results and new angles of approach and thus should be of interest to researchers throughout the field. The first five chapters contain an introduction to the basic theory, while the last seven chapters present a variety of applications. Finally, an appendix presents a large number of special continued fraction expansions. This very readable book also contains many valuable examples and problems.
Contents......Page all_32576_to_00623.cpc0009.djvu
I Introductory examples......Page all_32576_to_00623.cpc0017.djvu
1.1 Prelude to a definition......Page all_32576_to_00623.cpc0019.djvu
1.2 Formal definition. Convergence. Notation......Page all_32576_to_00623.cpc0023.djvu
2.1 The very best......Page all_32576_to_00623.cpc0026.djvu
2.2 A differential equation......Page all_32576_to_00623.cpc0029.djvu
2.3 An expansion of a function......Page all_32576_to_00623.cpc0030.djvu
2.4 A log-expansion......Page all_32576_to_00623.cpc0033.djvu
3.1 Hypergeometric functions......Page all_32576_to_00623.cpc0034.djvu
3.2 From power series to continued fractions......Page all_32576_to_00623.cpc0037.djvu
3.3 From continued fractions to power series......Page all_32576_to_00623.cpc0038.djvu
3.4 One fraction, two series......Page all_32576_to_00623.cpc0039.djvu
3.5 The length of an elliptic orbit......Page all_32576_to_00623.cpc0042.djvu
4.1 Śleszyński-Pringsheim's Theorem......Page all_32576_to_00623.cpc0046.djvu
4.2 Van Vleck's Theorem......Page all_32576_to_00623.cpc0048.djvu
4.3 Worpitzky's Theorem......Page all_32576_to_00623.cpc0051.djvu
5.1 Critical remarks on convergence......Page all_32576_to_00623.cpc0053.djvu
5.2 Modified approximants......Page all_32576_to_00623.cpc0054.djvu
5.3 Another concept of convergence......Page all_32576_to_00623.cpc0057.djvu
5.5 Computation of approximants......Page all_32576_to_00623.cpc0060.djvu
Problems......Page all_32576_to_00623.cpc0062.djvu
Remarks......Page all_32576_to_00623.cpc0066.djvu
References......Page all_32576_to_00623.cpc0068.djvu
II More basics......Page all_32576_to_00623.cpc0071.djvu
1.1 Tails......Page all_32576_to_00623.cpc0072.djvu
1.2 Tail sequences......Page all_32576_to_00623.cpc0075.djvu
1.3 Some properties of linear fractional transformations......Page all_32576_to_00623.cpc0078.djvu
1.4 Speed of convergence. Truncation error bounds......Page all_32576_to_00623.cpc0079.djvu
1.5 More about general convergence......Page all_32576_to_00623.cpc0082.djvu
2.1 Generating a continued fraction from a sequence......Page all_32576_to_00623.cpc0085.djvu
2.2 Equivalence transformations......Page all_32576_to_00623.cpc0088.djvu
2.3 The Bauer-Muir transformation......Page all_32576_to_00623.cpc0092.djvu
2.4 Contractions and extensions......Page all_32576_to_00623.cpc0099.djvu
Problems......Page all_32576_to_00623.cpc0102.djvu
References......Page all_32576_to_00623.cpc0107.djvu
III Convergence criteria......Page all_32576_to_00623.cpc0109.djvu
1.1 The Stern-Stolz divergence theorem......Page all_32576_to_00623.cpc0110.djvu
1.2 Continued fractions with positive elements......Page all_32576_to_00623.cpc0112.djvu
2.2 Classification of linear fractional transformations......Page all_32576_to_00623.cpc0117.djvu
2.3 Convergence of periodic continued fractions......Page all_32576_to_00623.cpc0120.djvu
2.4 Thiele oscillation......Page all_32576_to_00623.cpc0121.djvu
2.5 Tail sequences......Page all_32576_to_00623.cpc0122.djvu
3.1 Convergence sets......Page all_32576_to_00623.cpc0124.djvu
3.2 Value sets......Page all_32576_to_00623.cpc0126.djvu
3.3 Value set techniques I. A posteriori truncation error bounds......Page all_32576_to_00623.cpc0130.djvu
3.4 Value set techniques II. A priori truncation error bounds......Page all_32576_to_00623.cpc0132.djvu
3.5 Value set techniques III. The Hillam-Thron theorem......Page all_32576_to_00623.cpc0135.djvu
3.6 Value set techniques IV. The Stieltjes-Vitali theorem......Page all_32576_to_00623.cpc0139.djvu
3.7 Smaller value sets for truncation error bounds......Page all_32576_to_00623.cpc0141.djvu
4.1 Two useful lemmas......Page all_32576_to_00623.cpc0142.djvu
4.2 Parabola Theorems......Page all_32576_to_00623.cpc0146.djvu
4.3 S-fractions......Page all_32576_to_00623.cpc0154.djvu
4.4 Oval theorems......Page all_32576_to_00623.cpc0157.djvu
5.2 Finite limits, loxodromic case......Page all_32576_to_00623.cpc0166.djvu
5.3 Finite limits, parabolic case......Page all_32576_to_00623.cpc0173.djvu
5.4 Finite limits, elliptic case......Page all_32576_to_00623.cpc0175.djvu
5.5 Choice of approximants......Page all_32576_to_00623.cpc0176.djvu
5.6 Continued fractions K(a_n/1) where a_n \rightarrow \infty......Page all_32576_to_00623.cpc0185.djvu
5.7 Analytic continuation......Page all_32576_to_00623.cpc0190.djvu
Problems......Page all_32576_to_00623.cpc0193.djvu
Remarks......Page all_32576_to_00623.cpc0198.djvu
References......Page all_32576_to_00623.cpc0200.djvu
IV Continued fractions and three-term recurrence relations......Page all_32576_to_00623.cpc0205.djvu
1.1 The structure of the solution space......Page all_32576_to_00623.cpc0207.djvu
1.2 Approximants for periodic continued fractions in closed form......Page all_32576_to_00623.cpc0210.djvu
1.3 Linear independence of two solutions......Page all_32576_to_00623.cpc0212.djvu
1.4 The adjoint recurrence relation......Page all_32576_to_00623.cpc0213.djvu
1.5 Recurrence relations in a field F......Page all_32576_to_00623.cpc0216.djvu
2.1 Pincherle's theorem......Page all_32576_to_00623.cpc0217.djvu
2.2 Auric's theorem......Page all_32576_to_00623.cpc0222.djvu
3.1 Connection to recurrence relations......Page all_32576_to_00623.cpc0225.djvu
3.2 Minimal solutions and value sets......Page all_32576_to_00623.cpc0227.djvu
3.3 Tails and convergence......Page all_32576_to_00623.cpc0228.djvu
4.1 Forward stability of recurrence relations......Page all_32576_to_00623.cpc0234.djvu
4.2 A method for computing minimal solutions......Page all_32576_to_00623.cpc0236.djvu
5.1 Introduction......Page all_32576_to_00623.cpc0240.djvu
5.2 G-continued fractions......Page all_32576_to_00623.cpc0241.djvu
5.3 Generalized (or vector valued) continued fractions......Page all_32576_to_00623.cpc0244.djvu
Problems......Page all_32576_to_00623.cpc0246.djvu
Remarks......Page all_32576_to_00623.cpc0251.djvu
References......Page all_32576_to_00623.cpc0253.djvu
V Correspondence of continued fractions......Page all_32576_to_00623.cpc0257.djvu
1.1 Introducing the normed field......Page all_32576_to_00623.cpc0258.djvu
1.2 Correspondence at z = infty......Page all_32576_to_00623.cpc0259.djvu
1.3 Properties of the normed field (L, || \cdot ||)......Page all_32576_to_00623.cpc0262.djvu
2.1 Criteria for correspondence......Page all_32576_to_00623.cpc0264.djvu
2.2 Terminating continued fractions......Page all_32576_to_00623.cpc0267.djvu
2.4 C-fractions......Page all_32576_to_00623.cpc0268.djvu
2.5 When does f(z) have a regular C-fraction expansion?......Page all_32576_to_00623.cpc0272.djvu
2.6 Algorithms for producing corresponding continued fractions......Page all_32576_to_00623.cpc0275.djvu
3.1 Interpretation......Page all_32576_to_00623.cpc0281.djvu
3.2 A link between correspondence and classical convergence......Page all_32576_to_00623.cpc0286.djvu
4.1 A simple example......Page all_32576_to_00623.cpc0290.djvu
4.2 Approximants......Page all_32576_to_00623.cpc0293.djvu
4.3 Another example......Page all_32576_to_00623.cpc0295.djvu
Problems......Page all_32576_to_00623.cpc0297.djvu
Remarks......Page all_32576_to_00623.cpc0300.djvu
References......Page all_32576_to_00623.cpc0302.djvu
VI Hypergeometric functions......Page all_32576_to_00623.cpc0307.djvu
1.1 Why and how......Page all_32576_to_00623.cpc0308.djvu
1.2 A special case......Page all_32576_to_00623.cpc0312.djvu
1.3 Choice of approximants......Page all_32576_to_00623.cpc0314.djvu
1.4 Other continued fraction expansions......Page all_32576_to_00623.cpc0320.djvu
2.1 Notation......Page all_32576_to_00623.cpc0327.djvu
2.2 {}_1 F_1 (b;c;z)......Page all_32576_to_00623.cpc0328.djvu
2.3 {}_2 F_0 (a,b;z)......Page all_32576_to_00623.cpc0332.djvu
2.4 {}_0 F_1 (c;z)......Page all_32576_to_00623.cpc0333.djvu
3.1 Definition......Page all_32576_to_00623.cpc0334.djvu
3.2 {}_2 \phi_1 (a,b;c;q;z)......Page all_32576_to_00623.cpc0336.djvu
4.2 Some special cases......Page all_32576_to_00623.cpc0338.djvu
Problems......Page all_32576_to_00623.cpc0342.djvu
Remarks......Page all_32576_to_00623.cpc0344.djvu
References......Page all_32576_to_00623.cpc0345.djvu
VII Moments and orthogonality......Page all_32576_to_00623.cpc0347.djvu
1.1 Three examples......Page all_32576_to_00623.cpc0348.djvu
1.2 Moment sequences and moment functionals......Page all_32576_to_00623.cpc0354.djvu
1.3 Favard's theorem and Jacobi fractions......Page all_32576_to_00623.cpc0361.djvu
2.1 A quadrature formula......Page all_32576_to_00623.cpc0364.djvu
2.2 An example......Page all_32576_to_00623.cpc0367.djvu
3.1 The Stieltjes moment problem......Page all_32576_to_00623.cpc0369.djvu
3.2 Connection to continued fractions......Page all_32576_to_00623.cpc0372.djvu
Problems......Page all_32576_to_00623.cpc0377.djvu
Remarks......Page all_32576_to_00623.cpc0379.djvu
References......Page all_32576_to_00623.cpc0381.djvu
VIII Padé approximants......Page all_32576_to_00623.cpc0383.djvu
1.1 A creative problem......Page all_32576_to_00623.cpc0385.djvu
1.2 Padé approximants......Page all_32576_to_00623.cpc0390.djvu
1.3 Normal tables. Block structure......Page all_32576_to_00623.cpc0395.djvu
1.4 Connection to continued fraction expansions......Page all_32576_to_00623.cpc0398.djvu
1.5 A convergence result......Page all_32576_to_00623.cpc0401.djvu
2.1 Two-point Padé table......Page all_32576_to_00623.cpc0402.djvu
2.3 Multivariate Padé approximants......Page all_32576_to_00623.cpc0405.djvu
Problems......Page all_32576_to_00623.cpc0407.djvu
Remarks......Page all_32576_to_00623.cpc0408.djvu
References......Page all_32576_to_00623.cpc0409.djvu
IX Some applications in number theory......Page all_32576_to_00623.cpc0413.djvu
1.1 The Euclidean algorithm......Page all_32576_to_00623.cpc0415.djvu
1.2 Representation of positive numbers by regular continued fractions......Page all_32576_to_00623.cpc0418.djvu
1.3 Best approximation......Page all_32576_to_00623.cpc0424.djvu
2.1 Linear diophantine equations......Page all_32576_to_00623.cpc0426.djvu
2.2 Pell's equation......Page all_32576_to_00623.cpc0429.djvu
3.1 Introduction......Page all_32576_to_00623.cpc0434.djvu
3.2 Fermat factorization......Page all_32576_to_00623.cpc0436.djvu
3.3 Factor bases......Page all_32576_to_00623.cpc0439.djvu
3.4 A lemma on continued fractions......Page all_32576_to_00623.cpc0443.djvu
3.5 The continued fraction factoring algorithm......Page all_32576_to_00623.cpc0444.djvu
Problems......Page all_32576_to_00623.cpc0451.djvu
Remarks......Page all_32576_to_00623.cpc0453.djvu
References......Page all_32576_to_00623.cpc0455.djvu
X Zero-free regions......Page all_32576_to_00623.cpc0457.djvu
1.1 Introduction......Page all_32576_to_00623.cpc0458.djvu
1.2 An application of Van Vleck's theorem......Page all_32576_to_00623.cpc0464.djvu
1.3 An application of the parabola theorem......Page all_32576_to_00623.cpc0467.djvu
1.4 The Stieltjes case......Page all_32576_to_00623.cpc0469.djvu
1.5 The case when a_n \in R......Page all_32576_to_00623.cpc0472.djvu
1.6 A fundamental recurrence formula......Page all_32576_to_00623.cpc0476.djvu
1.7 Chain sequences......Page all_32576_to_00623.cpc0478.djvu
1.8 Two theorems on zero-free regions......Page all_32576_to_00623.cpc0480.djvu
2.1 Introductory remarks......Page all_32576_to_00623.cpc0484.djvu
2.2 Polynomials with real coefficients......Page all_32576_to_00623.cpc0486.djvu
2.3 Polynomials with complex coefficients......Page all_32576_to_00623.cpc0488.djvu
Problems......Page all_32576_to_00623.cpc0490.djvu
Remarks......Page all_32576_to_00623.cpc0493.djvu
References......Page all_32576_to_00623.cpc0495.djvu
XI Digital filters and continued fractions......Page all_32576_to_00623.cpc0497.djvu
1.1 Some introductory examples......Page all_32576_to_00623.cpc0498.djvu
1.2 Digital filters......Page all_32576_to_00623.cpc0500.djvu
1.3 Stable filters......Page all_32576_to_00623.cpc0505.djvu
1.4 Graph representation of filters......Page all_32576_to_00623.cpc0509.djvu
2.1 An old algorithm......Page all_32576_to_00623.cpc0517.djvu
2.2 Schur fractions and digital filters......Page all_32576_to_00623.cpc0521.djvu
3.1 General remarks......Page all_32576_to_00623.cpc0524.djvu
3.2 Stable filters with rational transfer function......Page all_32576_to_00623.cpc0525.djvu
Problems......Page all_32576_to_00623.cpc0530.djvu
Remarks......Page all_32576_to_00623.cpc0534.djvu
References......Page all_32576_to_00623.cpc0535.djvu
XII Applications to some differential equations......Page all_32576_to_00623.cpc0537.djvu
1.1 Introduction......Page all_32576_to_00623.cpc0539.djvu
1.2 An "almost" Euler-Cauchy equation......Page all_32576_to_00623.cpc0547.djvu
1.3 Two further examples......Page all_32576_to_00623.cpc0551.djvu
2.1 General Remarks......Page all_32576_to_00623.cpc0556.djvu
2.2 An old example......Page all_32576_to_00623.cpc0560.djvu
2.3 A new example......Page all_32576_to_00623.cpc0563.djvu
Problems......Page all_32576_to_00623.cpc0570.djvu
Remarks......Page all_32576_to_00623.cpc0572.djvu
References......Page all_32576_to_00623.cpc0573.djvu
Appendix. Some continued fraction expansions......Page all_32576_to_00623.cpc0575.djvu
1 Introduction......Page all_32576_to_00623.cpc0576.djvu
2 Mathematical constants......Page all_32576_to_00623.cpc0577.djvu
3.2 The exponential function......Page all_32576_to_00623.cpc0579.djvu
3.3 The general binomial function......Page all_32576_to_00623.cpc0580.djvu
3.4 The natural logarithm......Page all_32576_to_00623.cpc0582.djvu
3.5 Trigonometric and hyperbolic functions......Page all_32576_to_00623.cpc0584.djvu
3.6 Inverse trigonometric and hyperbolic functions......Page all_32576_to_00623.cpc0585.djvu
3.7 Continued fractions with simple values......Page all_32576_to_00623.cpc0587.djvu
4.1 General expressions......Page all_32576_to_00623.cpc0589.djvu
4.2 Special examples with {}_0 F_1......Page all_32576_to_00623.cpc0591.djvu
4.3 Special examples with {}_2 F_0......Page all_32576_to_00623.cpc0592.djvu
4.4 Special examples with {}_1 F_1......Page all_32576_to_00623.cpc0594.djvu
4.5 Special examples with {}_2 F_1......Page all_32576_to_00623.cpc0596.djvu
4.6 Some simple integrals......Page all_32576_to_00623.cpc0598.djvu
4.7 Gamma function expressions by Ramanujan......Page all_32576_to_00623.cpc0600.djvu
5.1 General expressions......Page all_32576_to_00623.cpc0609.djvu
5.2 Two general results by Andrews......Page all_32576_to_00623.cpc0610.djvu
5.3 q-expressions by Ramanujan......Page all_32576_to_00623.cpc0611.djvu
References......Page all_32576_to_00623.cpc0614.djvu
Subject index......Page all_32576_to_00623.cpc0617.djvu