دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تصفیه آب ویرایش: نویسندگان: Manish Kumar, Sanjeeb Mohapatra, Kishor Acharya سری: Sustainable Water Developments - Resources, Management, Treatment, Efficiency and Reuse ISBN (شابک) : 1032162791, 9781032162799 ناشر: CRC Press/Balkema سال نشر: 2022 تعداد صفحات: 495 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Contaminants of Emerging Concerns and Reigning Removal Technologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آلاینده های نگرانی های در حال ظهور و فن آوری های حذف حاکم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با افزایش تقاضا برای استفاده مجدد از فاضلاب، شارژ مجدد آب های زیرزمینی با فاضلاب تصفیه شده در سراسر جهان انجام شده است. در نتیجه، کیفیت آب های زیرزمینی با ظهور ریزآلاینده های منشأ مختلف انسانی، از جمله فاضلاب تصفیه نشده، نشت شیرابه های دفن زباله و رواناب از زمین های کشاورزی بدتر می شود. سرنوشت چنین آلایندههای نوظهور و زمینزایی در سیستمهای زیرسطحی، بهویژه در آبهای زیرزمینی، به عوامل متعددی بستگی دارد. ویژگیهای فیزیکوشیمیایی آلایندهها مانند ضریب تقسیم اکتانول-آب، ثابت تفکیک، حلالیت در آب، حساسیت به تجزیه زیستی در شرایط بیهوازی، و پایداری محیطی در شرایط مختلف زمینشناسی و pH نقش مهمی در جریان جرم زیرسطحی ایفا میکنند. بنابراین، تکنیکهای پیشرفته تصفیه فاضلاب و به دنبال آن اجرای دستورالعملهای سختگیرانهتر، برخی از اقداماتی است که میتواند از منابع آب محافظت کند.
این کتاب، به طور کلی، درک سرنوشت را ارائه میکند. و استراتژی های کاهش آلاینده های نوظهور و زمین زا در آب های زیرزمینی. بخش اول و دوم بینش دقیقی را در مورد تکنیک های مختلف حذف و رویکردهای کاهش ارائه می دهد. راهبردهای درمانی احتمالی، از جمله پاکسازی زیستی و تضعیف طبیعی، نیز در آن بخش ها پوشش داده شده است. ارزیابی زیستمحیطی، آسیبپذیری آبهای زیرزمینی، اثرات بهداشتی، و مقررات مربوط به آلایندههای مختلف به طور سیستماتیک در بخش سوم ارائه شده است.
With an increased demand for wastewater reuse, groundwater recharge with treated wastewater has been practiced across the globe. As a result, groundwater quality deteriorates by emerging micropollutants from various anthropogenic origins, including untreated wastewater, seepage of landfill leachate, and runoff from agricultural lands. The fate of such emerging and geogenic contaminants in subsurface systems, especially in the groundwater, depends on several factors. Physicochemical properties of contaminants such as octanol-water partition coefficient, dissociation constant, water solubility, susceptibility to biodegradation under anaerobic conditions, and environmental persistence under diverse geological and pH conditions play a critical role during subsurface mass flow. Thus, advanced wastewater treatment techniques, followed by implementing stricter guidelines, are some of the measures that can safeguard water resources.
This book, in general, gives an understanding of the fate and mitigation strategies for emerging and geogenic contaminants in the groundwater. The first and second sections provide a detailed insight into various removal techniques and mitigation approaches. Possible treatment strategies, including bioremediation and natural attenuation, are also covered in those sections. Environmental assessment, groundwater vulnerability, health effects, and regulations pertaining to various contaminants are systematically presented in the third section.
Cover Half Title Series Page Title Page Copyright Page About the book series Editorial board Table of Contents About the editors List of contributors Preface Acknowledgements SECTION 1 Mitigation strategies for emerging contaminants 1 Occurrence, fate, and plasma treatment of emerging contaminants in groundwater 1.1 Introduction 1.2 Groundwater contamination and its effect 1.3 Sources of groundwater pollution 1.3.1 Point source 1.3.2 Diffused source 1.4 Fate and pathways of groundwater pollution 1.5 ECs treatment 1.5.1 ECs’ treatment using plasma energy 1.5.2 Large-scale groundwater treatment 1.6 Groundwater preservation 1.7 Conclusion and future perspective References 2 Subsurface flow constructed wetlands as a post-treatment unit for emerging contaminants in municipal wastewater 2.1 Introduction 2.2 Emerging contaminants in municipal wastewater 2.3 Wastewater treatment technologies 2.3.1 Activated sludge process 2.3.2 On-site wastewater treatment systems 2.3.3 Nature-based wastewater treatment systems 2.4 Subsurface flow constructed wetlands 2.4.1 The design 2.4.1.1 Horizontal flow beds 2.4.1.2 Vertical flow beds 2.4.1.3 Hybrid systems 2.4.2 Filter media 2.4.3 Plants 2.4.4 Microbial communities in SFCWs 2.4.5 Treatment efficiency for conventional water quality parameters 2.5 SFCWs as a post-treatment unit for ECs 2.6 Further research opportunities for SFCW design optimisation 2.7 Conclusions References 3 Occurrence and fate of CECs transformation products 3.1 Overview of chemicals of emerging concern 3.1.1 Fate of emerging contaminants and formation of transformation products (TPs) 3.2 Pathways for the formation of TPs 3.2.1 Biotic transformation 3.2.2 Abiotic processes 3.3 Methods to identify TPs 3.4 TPs formed from different ECs 3.4.1 TPs formed from PPCPs 3.4.2 TPs formed from pesticide 3.4.3 TPs formed from industrial chemicals 3.5 The fate of TPs formed from ECs 3.6 Toxicity of TPs 3.7 Conclusion and future perspective References 4 Advanced treatment technologies for removal of contaminants of emerging concern 4.1 Occurrence of contaminants of emerging concerns (CECs) in environment 4.2 Detection of CECs in environmental aqueous media 4.3 Removal of CECs: conventional wastewater treatment processes 4.4 Advanced treatment processes 4.4.1 Membrane filtration 4.4.1.1 Nanofiltration (NF) 4.4.1.2 Reverse osmosis (RO) 4.4.2 Adsorption 4.4.3 Advanced oxidation processes (AOPs) 4.4.3.1 Electrochemical oxidation (EO) 4.4.3.2 Ozonation 4.4.3.3 Oxidation using ozone/UV/hydrogen peroxide 4.4.3.4 Fenton and photo-Fenton processes 4.4.3.5 Photocatalysis 4.5 Recent developments in treatment technologies 4.5.1 Combined processes 4.5.2 Integration of membrane technology 4.5.3 Heterogenous photocatalysis 4.6 Comparison of different advanced treatment technologies 4.7 Conclusions and future perspectives Acknowledgments References 5 Advanced oxidation process for removal of emerging contaminant sin water and sustainable approaches 5.1 Introduction 5.1.1 CECs: an overview 5.1.2 Treatment of CECs: conventional treatment systems vs. AOPs 5.1.3 Factors influencing the performance of AOPs 5.2 Catalyst-based AOPs 5.2.1 Photocatalysis (PC) 5.2.2 Photoelectrocatalysis (PEC) 5.2.3 Solar PC: toward sustainable remediation 5.3 Perspective and future scope References SECTION 2 Removal of geo- and anthropo-genic contaminants 6 Solid waste and landfill leachate: A transient source of emerging microbes and legacy contaminants for groundwater pollution 6.1 Introduction 6.2 Source, types, and different sector of solid waste 6.2.1 Municipal wastes 6.2.2 Industrial wastes 6.2.3 Hazardous wastes 6.3 Solid waste generation, composition, and characterization 6.4 Emerging and legacy contaminants in solid wastes 6.5 Potential environmental impacts 6.6 Solid waste treatment techniques 6.6.1 Landfall disposal 6.6.2 Sanitary landfill 6.7 Emerging and legacy contaminants in landfill leachates 6.8 Fate of landfill leachate 6.9 Process of decomposition 6.10 Environmental concerns to landfill disposal and leachate 6.11 Occurrence of pollutants in groundwater 6.12 Emerging contaminants in groundwater (organic, inorganic, and biological contaminants) 6.12.1 Sources and pathways 6.12.2 Organic and inorganic pollutants 6.12.3 Biological contaminants 6.12.4 Processes of remediation of organic and inorganic wastes 6.12.4.1 Composting 6.12.4.2 Aerobic digestion and anaerobic digestion 6.12.4.3 Biomethanation 6.12.4.4 Incineration 6.12.4.5 Pyrolysis and gasification 6.13 Treatment technologies for landfill leachate 6.14 Environmental monitoring, waste management practices, and challenges 6.15 Sustainable solid waste management 6.16 Conclusions References 7 Synthesis of hydroxyapatite nanoparticles by modified co-precipitation technique and investigation of the ceramic characteristics upon thermal treatment for their potential applications for water treatment 7.1 Introduction 7.2 Experimental 7.2.1 Materials 7.2.2 Synthesis of nano-hydroxyapatite 7.2.3 Characterizations 7.3 Results and discussions 7.4 Conclusions Conflicts of interest Acknowledgments References 8 Nanostructured adsorbents for uranium removal from drinking water: A review 8.1 Introduction 8.2 Graphene oxide (GO) for uranium uptake in aqueous media 8.3 Strategies to improve the sorption efficiency of GO-based materials for U adsorption 8.3.1 Metal/metal oxide-incorporated GO composite materials 8.3.1.1 GO-iron/iron oxide composites 8.3.1.2 GO-zirconium composite 8.3.1.3 GO-manganese oxide composite 8.3.2 Composite adsorbents based on GO and natural/biological materials 8.3.2.1 GO-chitosan composites 8.3.2.2 GO-fungus composites 8.3.2.3 Composites based on GO and other natural materials 8.3.3 GO-based structural frameworks 8.3.3.1 GO-based metal organic frameworks (MOF) 8.3.3.2 GO-based Zeolitic imidazole frameworks (ZIF) 8.3.4 Multi-level surface functionalization of GO-based materials 8.3.4.1 Amidoximation of GO 8.3.4.2 Sulfonation of GO 8.3.4.3 Carboxylation of GO 8.3.4.4 Amidation of GO 8.3.4.5 Phosphorylation of GO 8.3.4.6 Hydroxylation of GO 8.3.4.7 Treatment of GO with chelating agent 8.3.4.8 Phosphatidyl-assisted fabrication of GO 8.4 Modeling the sorption of U(VI) on GO and GO composite adsorbents 8.4.1 Adsorption isotherms 8.4.2 Adsorption kinetics 8.5 Effect of solution components on uranium sorption 8.5.1 Solution pH 8.5.2 Presence of co-ions 8.5.3 Temperature 8.6 Mechanism of the U adsorption onto GO-based adsorbents 8.7 Regeneration and reusability of the saturated material 8.8 Conclusion and recommendations Acknowledgments References 9 Fluoride contamination and abatement measures: A geoenvironmental perspective 9.1 Introduction 9.1.1 Fluorides in natural environment 9.1.2 Mechanisms influencing fluoride attenuation into groundwater 9.1.3 Effects of fluoride on plants, animals and human beings 9.1.4 Global scenario 9.2 Defluoridation techniques 9.2.1 Relevance of the work 9.3 Geomaterials 9.3.1 Soils and clays 9.3.1.1 Potter clay 9.3.1.2 Bricks 9.3.2 Bentonite 9.3.3 Montmorillonite 9.3.4 Kaolinite 9.3.5 Limestone 9.3.6 Bauxite 9.3.7 Laterites 9.3.8 Hematite 9.3.9 Calcite 9.3.10 Siderite 9.3.11 Lignite 9.3.12 Hydroxyapatite 9.3.13 Other geomaterials 9.4 Remediation of fluoride contaminated soils 9.5 Conclusions References 10 Physicochemical and biological methods for treatment of municipal solid waste incineration ash to reduce its potential adverse impacts on groundwater 10.1 Introduction 10.2 Physicochemical characteristics of IBA and IFA 10.3 Regulatory requirement for disposal/reuse of MSWI ash residues 10.4 Potential adverse impacts of MSWI ash (IBA and IFA) leachate on groundwater 10.5 Physicochemical methods for treatment of IBA and IFA 10.5.1 Physical treatment: screening and magnetic separation 10.5.2 Chemical treatment 10.5.2.1 Aging 10.5.2.2 Solidification/stabilization (S/S) method 10.5.2.3 Chemical extraction (chemical leaching) 10.5.3 Factors affecting chemical leaching process 10.5.3.1 Characteristics of MSWI ash 10.5.3.2 Liquid-to-solid ratio (L/S) 10.5.3.3 pH 10.5.3.4 Temperature 10.5.3.5 Weathering/aging 10.5.3.6 Presence of organic compounds 10.5.4 Thermal treatments of IBA and IFA 10.5.4.1 Vitrification 10.5.4.2 Melting 10.5.4.3 Sintering 10.6 Biological method (bacteria- and fungal-based bioleaching) for treatment of IBA and IFA 10.7 Metal mobilization and immobilization in biological treatment processes 10.7.1 Microbes-metal interactions: metal mobilization 10.7.1.1 Acidolysis 10.7.1.2 Redoxolysis 10.7.1.3 Complexolysis 10.7.1.4 Alkylation 10.7.2 Microbes-metal interactions: metal immobilization 10.7.2.1 Biosorption 10.7.2.2 Bioaccumulation 10.7.2.3 Redox reaction 10.7.2.4 Complex formation 10.8 Factors affecting microbial mobilization and immobilization of heavy metals 10.8.1 Nature of microorganisms 10.8.2 pH 10.8.3 Temperature 10.8.4 Aerobic and anaerobic condition 10.8.5 Heavy metal characteristics 10.9 Potential reutilization of IBA and IFA for civil engineering applications 10.10 Conclusions and future prospects Acknowledgments Conflict of interest References 11 Concern for heavy metal ion water pollution: Their strategic detection and removal opportunities 11.1 Introduction 11.1.1 Sources of water pollution 11.1.2 Impact of industrial wastewater 11.1.3 Types of water pollutants 11.2 Heavy metal pollution 11.2.1 Types of heavy metal ions 11.2.1.1 Cadmium (Cd) 11.2.1.2 Arsenic (As) 11.2.1.3 Copper (Cu) 11.2.1.4 Nickel (Ni) 11.2.1.5 Chromium (Cr) 11.2.1.6 Zinc (Zn) 11.2.1.7 Lead (Pb) 11.2.1.8 Mercury (Hg) 11.2.2 Detection methods 11.2.3 Biosensors 11.2.4 Classification of biosensors 11.3 Heavy metal removal treatment technique using adsorption and photocatalytic reduction 11.3.1 Photocatalysis 11.3.2 Metal oxides usage in photocatalytic application 11.4 Future scope 11.5 Conclusion Acknowledgements Conflict of interest References SECTION 3 Environmental assessment pathways, and socio-ecosystem framework 12 Environmental fate assessments to understand surface water pollution from metaldehyde-based molluscicide 12.1 An overview of metaldehyde pollution in the UK 12.1.1 Contamination of surface water from metaldehyde 12.1.2 Metaldehyde degradation in soil 12.1.3 Objectives of the study 12.2 Biodegradation of metaldehyde in UK scenarios is overestimated by current risk assessment models 12.2.1 Materials and laboratory methods 12.2.2 Metaldehyde detection and quantification in soil extracts 12.2.3 Soil incubation set-up and operation 12.2.4 The effects of varied temperature and soil moisture content on metaldehyde degradation 12.3 Rapid leaching to lower soil horizons will increase the risk of metaldehyde pollution 12.3.1 Lysimeter design and operation 12.3.2 Discussion of experiment objectives 12.3.3 Results and discussion of metaldehyde leaching 12.3.4 Metaldehyde persistence in the soil profile 12.3.5 Comparison to model predictions 12.3.6 Final discussion and future research 12.4 Conclusions and recommendation drawn from the study References 13 Elucidation of vulnerability of groundwater quality to agriculture and surface runoff: A comprehensive review under the backdrop of future scenario of climate change 13.1 Introduction 13.2 Groundwater pollution by agriculture and urban surface runoff 13.2.1 Irrigated agriculture: means of contamination in groundwater 13.2.2 Groundwater contamination by nitrate 13.2.3 Fluoride and cadmium contamination in groundwater: surface runoff in cities 13.3 Climate change and mobilization of contaminants in groundwater 13.3.1 Climate change and associated factors 13.3.2 Relationship of climate variability and vulnerability of groundwater quality 13.3.3 Metal mobilization in groundwater influenced by climatic factors 13.3.4 Aquifer contamination risk owing to urban expansion 13.4 Mass flow modeling of emerging contaminants in groundwater 13.5 Conclusion & future scope References 14 Root causes of groundwater contamination for analyzing resource management and policy framework 14.1 Introduction 14.2 Challenges and hurdles in groundwater resource management 14.2.1 Unequal spatial and temporal distribution 14.2.2 Dependency on groundwater 14.2.3 Over-exploitation 14.2.4 Groundwater recharge 14.2.5 Groundwater contamination 14.2.5.1 Sources of groundwater contamination in the Indian context 14.3 Implementation and compliance 14.3.1 Command and control – a case of Bangalore, Karnataka 14.3.2 Main issues in Maharashtra 14.3.3 Tending to water exhaustion through electricity in Gujarat 14.4 Methodology for analyzing GWRM (ground water resource management) 14.4.1 National ground water resource management 14.4.2 Scope of the current program 14.4.3 Groundwater management at the grass-root level 14.4.3.1 Recommendation for mitigating the environmental and social risks 14.5 Capacity identification and assessment of the program 14.5.1 National-level assessment 14.5.1.1 Adequacy of administrative framework 14.5.1.2 Adequacy of regulatory and organizational environment 14.5.1.3 Performance in implementation and support in groundwater program 14.5.1.4 Institutional capacities to address environmental and social issues 14.5.2 State-level assessment 14.5.2.1 Adequacy of administration framework 14.5.2.2 Adequacy of the legislative system for environmental evaluation 14.5.2.3 Adequacy of an administrative system for social safeguards 14.5.2.4 Adequacy of regulatory and organizational environment 14.5.3 Assessment of the program 14.5.3.1 Benefits for potential environment 14.5.3.2 Potential environment impacts and risks 14.6 Gap identification in groundwater management 14.6.1 Legal gap in groundwater resource management 14.6.2 Policy-related issues pertaining to groundwater management 14.7 Counter- and retrospective measures 14.7.1 Promoting recharge 14.8 Conclusions References 15 Pesticides and fertilizers contamination of groundwater: Health effects, treatment approaches, and legal aspects 15.1 Introduction 15.2 Types of popular pesticides and fertilisers 15.2.1 Classification based on pesticide function and target pest organism 15.2.2 Classification based on mode of entry 15.2.3 Classification based on chemical composition of pesticides 15.3 Usage of pesticides and fertilisers 15.4 Pathway to groundwater contamination 15.4.1 Point sources 15.4.2 Non-point sources 15.4.3 Factors affecting the fate of pesticides in soil environment 15.5 Health effects 15.5.1 Acute effects 15.5.2 Chronic effects 15.5.2.1 Neurological impact 15.5.2.2 Intoxication 15.5.2.3 Other effects 15.6 Monitoring methodology and assessment 15.6.1 Sampling 15.6.2 Analytical methodology 15.6.2.1 Physicochemical separation methods 15.6.2.2 Detection methods 15.7 Permissible limit of groundwater quality for pesticides and fertiliser 15.8 Available treatment technology 15.8.1 Earthworm-assisted treatment 15.8.2 Removal of agrochemicals with nanoparticles 15.8.3 Removal of agrochemicals by aquatic plants 15.8.4 Fungal-assisted treatment 15.8.5 Enzymatic degradation 15.9 Possible management under legal framework 15.10 Suggested framework for the management of agrochemicals 15.11 Conclusions References 16 Nanomaterials and devices for the provision of safe drinking water in rural communities 16.1 Introduction 16.2 Chemical of concern for human health and water supply 16.2.1 Common approaches to water purification 16.2.2 Pathogens in drinking water 16.2.3 Chemical pollutants and toxic metals 16.3 Sensing in rural India 16.4 Recent advances in filtration with novel nanomaterials 16.5 Removal by photocatalysis and other degradation methods using nanomaterials 16.6 Conclusions References 17 An emerging treatment technology: Exploring deep learning and computer vision approach in revealing biosynthesized nanoparticle size for optimization studies Abbreviations 17.1 Introduction 17.2 Literature review 17.3 Materials and methods 17.3.1 Convolution neural network model 17.3.1.1 Convolution operation 17.3.1.2 Activation layer 17.3.1.3 Pooling layer 17.3.1.4 Flattening layer 17.3.1.5 Fully connected layer 17.3.2 Model implementation 17.3.2.1 Model construction 17.3.2.2 Compiling the model 17.3.2.3 Model prediction 17.4 Results 17.4.1 Model evaluation 17.5 Discussion 17.6 Conclusion Acknowledgments References Index