ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Contaminants of Emerging Concerns and Reigning Removal Technologies

دانلود کتاب آلاینده های نگرانی های در حال ظهور و فن آوری های حذف حاکم

Contaminants of Emerging Concerns and Reigning Removal Technologies

مشخصات کتاب

Contaminants of Emerging Concerns and Reigning Removal Technologies

دسته بندی: تصفیه آب
ویرایش:  
نویسندگان: , ,   
سری: Sustainable Water Developments - Resources, Management, Treatment, Efficiency and Reuse 
ISBN (شابک) : 1032162791, 9781032162799 
ناشر: CRC Press/Balkema 
سال نشر: 2022 
تعداد صفحات: 495 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 18 مگابایت 

قیمت کتاب (تومان) : 53,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Contaminants of Emerging Concerns and Reigning Removal Technologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب آلاینده های نگرانی های در حال ظهور و فن آوری های حذف حاکم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب آلاینده های نگرانی های در حال ظهور و فن آوری های حذف حاکم



با افزایش تقاضا برای استفاده مجدد از فاضلاب، شارژ مجدد آب های زیرزمینی با فاضلاب تصفیه شده در سراسر جهان انجام شده است. در نتیجه، کیفیت آب های زیرزمینی با ظهور ریزآلاینده های منشأ مختلف انسانی، از جمله فاضلاب تصفیه نشده، نشت شیرابه های دفن زباله و رواناب از زمین های کشاورزی بدتر می شود. سرنوشت چنین آلاینده‌های نوظهور و زمین‌زایی در سیستم‌های زیرسطحی، به‌ویژه در آب‌های زیرزمینی، به عوامل متعددی بستگی دارد. ویژگی‌های فیزیکوشیمیایی آلاینده‌ها مانند ضریب تقسیم اکتانول-آب، ثابت تفکیک، حلالیت در آب، حساسیت به تجزیه زیستی در شرایط بی‌هوازی، و پایداری محیطی در شرایط مختلف زمین‌شناسی و pH نقش مهمی در جریان جرم زیرسطحی ایفا می‌کنند. بنابراین، تکنیک‌های پیشرفته تصفیه فاضلاب و به دنبال آن اجرای دستورالعمل‌های سخت‌گیرانه‌تر، برخی از اقداماتی است که می‌تواند از منابع آب محافظت کند.

این کتاب، به طور کلی، درک سرنوشت را ارائه می‌کند. و استراتژی های کاهش آلاینده های نوظهور و زمین زا در آب های زیرزمینی. بخش اول و دوم بینش دقیقی را در مورد تکنیک های مختلف حذف و رویکردهای کاهش ارائه می دهد. راهبردهای درمانی احتمالی، از جمله پاکسازی زیستی و تضعیف طبیعی، نیز در آن بخش ها پوشش داده شده است. ارزیابی زیست‌محیطی، آسیب‌پذیری آب‌های زیرزمینی، اثرات بهداشتی، و مقررات مربوط به آلاینده‌های مختلف به طور سیستماتیک در بخش سوم ارائه شده است.


توضیحاتی درمورد کتاب به خارجی

With an increased demand for wastewater reuse, groundwater recharge with treated wastewater has been practiced across the globe. As a result, groundwater quality deteriorates by emerging micropollutants from various anthropogenic origins, including untreated wastewater, seepage of landfill leachate, and runoff from agricultural lands. The fate of such emerging and geogenic contaminants in subsurface systems, especially in the groundwater, depends on several factors. Physicochemical properties of contaminants such as octanol-water partition coefficient, dissociation constant, water solubility, susceptibility to biodegradation under anaerobic conditions, and environmental persistence under diverse geological and pH conditions play a critical role during subsurface mass flow. Thus, advanced wastewater treatment techniques, followed by implementing stricter guidelines, are some of the measures that can safeguard water resources.

This book, in general, gives an understanding of the fate and mitigation strategies for emerging and geogenic contaminants in the groundwater. The first and second sections provide a detailed insight into various removal techniques and mitigation approaches. Possible treatment strategies, including bioremediation and natural attenuation, are also covered in those sections. Environmental assessment, groundwater vulnerability, health effects, and regulations pertaining to various contaminants are systematically presented in the third section.



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
About the book series
Editorial board
Table of Contents
About the editors
List of contributors
Preface
Acknowledgements
SECTION 1 Mitigation strategies for emerging contaminants
	1 Occurrence, fate, and plasma treatment of emerging contaminants in groundwater
		1.1 Introduction
		1.2 Groundwater contamination and its effect
		1.3 Sources of groundwater pollution
			1.3.1 Point source
			1.3.2 Diffused source
		1.4 Fate and pathways of groundwater pollution
		1.5 ECs treatment
			1.5.1 ECs’ treatment using plasma energy
			1.5.2 Large-scale groundwater treatment
		1.6 Groundwater preservation
		1.7 Conclusion and future perspective
		References
	2 Subsurface flow constructed wetlands as a post-treatment unit for emerging contaminants in municipal wastewater
		2.1 Introduction
		2.2 Emerging contaminants in municipal wastewater
		2.3 Wastewater treatment technologies
			2.3.1 Activated sludge process
			2.3.2 On-site wastewater treatment systems
			2.3.3 Nature-based wastewater treatment systems
		2.4 Subsurface flow constructed wetlands
			2.4.1 The design
				2.4.1.1 Horizontal flow beds
				2.4.1.2 Vertical flow beds
				2.4.1.3 Hybrid systems
			2.4.2 Filter media
			2.4.3 Plants
			2.4.4 Microbial communities in SFCWs
			2.4.5 Treatment efficiency for conventional water quality parameters
		2.5 SFCWs as a post-treatment unit for ECs
		2.6 Further research opportunities for SFCW design optimisation
		2.7 Conclusions
		References
	3 Occurrence and fate of CECs transformation products
		3.1 Overview of chemicals of emerging concern
			3.1.1 Fate of emerging contaminants and formation of transformation products (TPs)
		3.2 Pathways for the formation of TPs
			3.2.1 Biotic transformation
			3.2.2 Abiotic processes
		3.3 Methods to identify TPs
		3.4 TPs formed from different ECs
			3.4.1 TPs formed from PPCPs
			3.4.2 TPs formed from pesticide
			3.4.3 TPs formed from industrial chemicals
		3.5 The fate of TPs formed from ECs
		3.6 Toxicity of TPs
		3.7 Conclusion and future perspective
		References
	4 Advanced treatment technologies for removal of contaminants of emerging concern
		4.1 Occurrence of contaminants of emerging concerns (CECs) in environment
		4.2 Detection of CECs in environmental aqueous media
		4.3 Removal of CECs: conventional wastewater treatment processes
		4.4 Advanced treatment processes
			4.4.1 Membrane filtration
				4.4.1.1 Nanofiltration (NF)
				4.4.1.2 Reverse osmosis (RO)
			4.4.2 Adsorption
			4.4.3 Advanced oxidation processes (AOPs)
				4.4.3.1 Electrochemical oxidation (EO)
				4.4.3.2 Ozonation
				4.4.3.3 Oxidation using ozone/UV/hydrogen peroxide
				4.4.3.4 Fenton and photo-Fenton processes
				4.4.3.5 Photocatalysis
		4.5 Recent developments in treatment technologies
			4.5.1 Combined processes
			4.5.2 Integration of membrane technology
			4.5.3 Heterogenous photocatalysis
		4.6 Comparison of different advanced treatment technologies
		4.7 Conclusions and future perspectives
		Acknowledgments
		References
	5 Advanced oxidation process for removal of emerging contaminant sin water and sustainable approaches
		5.1 Introduction
			5.1.1 CECs: an overview
			5.1.2 Treatment of CECs: conventional treatment systems vs. AOPs
			5.1.3 Factors influencing the performance of AOPs
		5.2 Catalyst-based AOPs
			5.2.1 Photocatalysis (PC)
			5.2.2 Photoelectrocatalysis (PEC)
			5.2.3 Solar PC: toward sustainable remediation
		5.3 Perspective and future scope
		References
SECTION 2 Removal of geo- and anthropo-genic contaminants
	6 Solid waste and landfill leachate: A transient source of emerging microbes and legacy contaminants for groundwater pollution
		6.1 Introduction
		6.2 Source, types, and different sector of solid waste
			6.2.1 Municipal wastes
			6.2.2 Industrial wastes
			6.2.3 Hazardous wastes
		6.3 Solid waste generation, composition, and characterization
		6.4 Emerging and legacy contaminants in solid wastes
		6.5 Potential environmental impacts
		6.6 Solid waste treatment techniques
			6.6.1 Landfall disposal
			6.6.2 Sanitary landfill
		6.7 Emerging and legacy contaminants in landfill leachates
		6.8 Fate of landfill leachate
		6.9 Process of decomposition
		6.10 Environmental concerns to landfill disposal and leachate
		6.11 Occurrence of pollutants in groundwater
		6.12 Emerging contaminants in groundwater (organic, inorganic, and biological contaminants)
			6.12.1 Sources and pathways
			6.12.2 Organic and inorganic pollutants
			6.12.3 Biological contaminants
			6.12.4 Processes of remediation of organic and inorganic wastes
				6.12.4.1 Composting
				6.12.4.2 Aerobic digestion and anaerobic digestion
				6.12.4.3 Biomethanation
				6.12.4.4 Incineration
				6.12.4.5 Pyrolysis and gasification
		6.13 Treatment technologies for landfill leachate
		6.14 Environmental monitoring, waste management practices, and challenges
		6.15 Sustainable solid waste management
		6.16 Conclusions
		References
	7 Synthesis of hydroxyapatite nanoparticles by modified co-precipitation technique and investigation of the ceramic characteristics upon thermal treatment for their potential applications for water treatment
		7.1 Introduction
		7.2 Experimental
			7.2.1 Materials
			7.2.2 Synthesis of nano-hydroxyapatite
			7.2.3 Characterizations
		7.3 Results and discussions
		7.4 Conclusions
		Conflicts of interest
		Acknowledgments
		References
	8 Nanostructured adsorbents for uranium removal from drinking water: A review
		8.1 Introduction
		8.2 Graphene oxide (GO) for uranium uptake in aqueous media
		8.3 Strategies to improve the sorption efficiency of GO-based materials for U adsorption
			8.3.1 Metal/metal oxide-incorporated GO composite materials
				8.3.1.1 GO-iron/iron oxide composites
				8.3.1.2 GO-zirconium composite
				8.3.1.3 GO-manganese oxide composite
			8.3.2 Composite adsorbents based on GO and natural/biological materials
				8.3.2.1 GO-chitosan composites
				8.3.2.2 GO-fungus composites
				8.3.2.3 Composites based on GO and other natural materials
			8.3.3 GO-based structural frameworks
				8.3.3.1 GO-based metal organic frameworks (MOF)
				8.3.3.2 GO-based Zeolitic imidazole frameworks (ZIF)
			8.3.4 Multi-level surface functionalization of GO-based materials
				8.3.4.1 Amidoximation of GO
				8.3.4.2 Sulfonation of GO
				8.3.4.3 Carboxylation of GO
				8.3.4.4 Amidation of GO
				8.3.4.5 Phosphorylation of GO
				8.3.4.6 Hydroxylation of GO
				8.3.4.7 Treatment of GO with chelating agent
				8.3.4.8 Phosphatidyl-assisted fabrication of GO
		8.4 Modeling the sorption of U(VI) on GO and GO composite adsorbents
			8.4.1 Adsorption isotherms
			8.4.2 Adsorption kinetics
		8.5 Effect of solution components on uranium sorption
			8.5.1 Solution pH
			8.5.2 Presence of co-ions
			8.5.3 Temperature
		8.6 Mechanism of the U adsorption onto GO-based adsorbents
		8.7 Regeneration and reusability of the saturated material
		8.8 Conclusion and recommendations
		Acknowledgments
		References
	9 Fluoride contamination and abatement measures: A geoenvironmental perspective
		9.1 Introduction
			9.1.1 Fluorides in natural environment
			9.1.2 Mechanisms influencing fluoride attenuation into groundwater
			9.1.3 Effects of fluoride on plants, animals and human beings
			9.1.4 Global scenario
		9.2 Defluoridation techniques
			9.2.1 Relevance of the work
		9.3 Geomaterials
			9.3.1 Soils and clays
				9.3.1.1 Potter clay
				9.3.1.2 Bricks
			9.3.2 Bentonite
			9.3.3 Montmorillonite
			9.3.4 Kaolinite
			9.3.5 Limestone
			9.3.6 Bauxite
			9.3.7 Laterites
			9.3.8 Hematite
			9.3.9 Calcite
			9.3.10 Siderite
				9.3.11 Lignite
				9.3.12 Hydroxyapatite
				9.3.13 Other geomaterials
		9.4 Remediation of fluoride contaminated soils
		9.5 Conclusions
		References
	10 Physicochemical and biological methods for treatment of municipal solid waste incineration ash to reduce its potential adverse impacts on groundwater
		10.1 Introduction
		10.2 Physicochemical characteristics of IBA and IFA
		10.3 Regulatory requirement for disposal/reuse of MSWI ash residues
		10.4 Potential adverse impacts of MSWI ash (IBA and IFA) leachate on groundwater
		10.5 Physicochemical methods for treatment of IBA and IFA
			10.5.1 Physical treatment: screening and magnetic separation
			10.5.2 Chemical treatment
				10.5.2.1 Aging
				10.5.2.2 Solidification/stabilization (S/S) method
				10.5.2.3 Chemical extraction (chemical leaching)
			10.5.3 Factors affecting chemical leaching process
				10.5.3.1 Characteristics of MSWI ash
				10.5.3.2 Liquid-to-solid ratio (L/S)
				10.5.3.3 pH
				10.5.3.4 Temperature
				10.5.3.5 Weathering/aging
				10.5.3.6 Presence of organic compounds
			10.5.4 Thermal treatments of IBA and IFA
				10.5.4.1 Vitrification
				10.5.4.2 Melting
				10.5.4.3 Sintering
		10.6 Biological method (bacteria- and fungal-based bioleaching) for treatment of IBA and IFA
		10.7 Metal mobilization and immobilization in biological treatment processes
			10.7.1 Microbes-metal interactions: metal mobilization
				10.7.1.1 Acidolysis
				10.7.1.2 Redoxolysis
				10.7.1.3 Complexolysis
				10.7.1.4 Alkylation
			10.7.2 Microbes-metal interactions: metal immobilization
				10.7.2.1 Biosorption
				10.7.2.2 Bioaccumulation
				10.7.2.3 Redox reaction
				10.7.2.4 Complex formation
		10.8 Factors affecting microbial mobilization and immobilization of heavy metals
			10.8.1 Nature of microorganisms
			10.8.2 pH
			10.8.3 Temperature
			10.8.4 Aerobic and anaerobic condition
			10.8.5 Heavy metal characteristics
		10.9 Potential reutilization of IBA and IFA for civil engineering applications
		10.10 Conclusions and future prospects
		Acknowledgments
		Conflict of interest
		References
	11 Concern for heavy metal ion water pollution: Their strategic detection and removal opportunities
		11.1 Introduction
			11.1.1 Sources of water pollution
			11.1.2 Impact of industrial wastewater
			11.1.3 Types of water pollutants
		11.2 Heavy metal pollution
			11.2.1 Types of heavy metal ions
				11.2.1.1 Cadmium (Cd)
				11.2.1.2 Arsenic (As)
				11.2.1.3 Copper (Cu)
				11.2.1.4 Nickel (Ni)
				11.2.1.5 Chromium (Cr)
				11.2.1.6 Zinc (Zn)
				11.2.1.7 Lead (Pb)
				11.2.1.8 Mercury (Hg)
			11.2.2 Detection methods
			11.2.3 Biosensors
		11.2.4 Classification of biosensors
		11.3 Heavy metal removal treatment technique using adsorption and photocatalytic reduction
			11.3.1 Photocatalysis
			11.3.2 Metal oxides usage in photocatalytic application
		11.4 Future scope
		11.5 Conclusion
		Acknowledgements
		Conflict of interest
		References
SECTION 3 Environmental assessment pathways, and socio-ecosystem framework
	12 Environmental fate assessments to understand surface water pollution from metaldehyde-based molluscicide
		12.1 An overview of metaldehyde pollution in the UK
			12.1.1 Contamination of surface water from metaldehyde
			12.1.2 Metaldehyde degradation in soil
			12.1.3 Objectives of the study
		12.2 Biodegradation of metaldehyde in UK scenarios is overestimated by current risk assessment models
			12.2.1 Materials and laboratory methods
			12.2.2 Metaldehyde detection and quantification in soil extracts
			12.2.3 Soil incubation set-up and operation
			12.2.4 The effects of varied temperature and soil moisture content on metaldehyde degradation
		12.3 Rapid leaching to lower soil horizons will increase the risk of metaldehyde pollution
			12.3.1 Lysimeter design and operation
			12.3.2 Discussion of experiment objectives
			12.3.3 Results and discussion of metaldehyde leaching
			12.3.4 Metaldehyde persistence in the soil profile
			12.3.5 Comparison to model predictions
			12.3.6 Final discussion and future research
		12.4 Conclusions and recommendation drawn from the study
		References
	13 Elucidation of vulnerability of groundwater quality to agriculture and surface runoff: A comprehensive review under the backdrop of future scenario of climate change
		13.1 Introduction
		13.2 Groundwater pollution by agriculture and urban surface runoff
			13.2.1 Irrigated agriculture: means of contamination in groundwater
			13.2.2 Groundwater contamination by nitrate
			13.2.3 Fluoride and cadmium contamination in groundwater: surface runoff in cities
		13.3 Climate change and mobilization of contaminants in groundwater
			13.3.1 Climate change and associated factors
			13.3.2 Relationship of climate variability and vulnerability of groundwater quality
			13.3.3 Metal mobilization in groundwater influenced by climatic factors
			13.3.4 Aquifer contamination risk owing to urban expansion
		13.4 Mass flow modeling of emerging contaminants in groundwater
		13.5 Conclusion & future scope
		References
	14 Root causes of groundwater contamination for analyzing resource management and policy framework
		14.1 Introduction
		14.2 Challenges and hurdles in groundwater resource management
			14.2.1 Unequal spatial and temporal distribution
			14.2.2 Dependency on groundwater
			14.2.3 Over-exploitation
			14.2.4 Groundwater recharge
			14.2.5 Groundwater contamination
				14.2.5.1 Sources of groundwater contamination in the Indian context
		14.3 Implementation and compliance
			14.3.1 Command and control – a case of Bangalore, Karnataka
			14.3.2 Main issues in Maharashtra
			14.3.3 Tending to water exhaustion through electricity in Gujarat
		14.4 Methodology for analyzing GWRM (ground water resource management)
			14.4.1 National ground water resource management
			14.4.2 Scope of the current program
			14.4.3 Groundwater management at the grass-root level
				14.4.3.1 Recommendation for mitigating the environmental and social risks
		14.5 Capacity identification and assessment of the program
			14.5.1 National-level assessment
				14.5.1.1 Adequacy of administrative framework
				14.5.1.2 Adequacy of regulatory and organizational environment
				14.5.1.3 Performance in implementation and support in groundwater program
				14.5.1.4 Institutional capacities to address environmental and social issues
			14.5.2 State-level assessment
				14.5.2.1 Adequacy of administration framework
				14.5.2.2 Adequacy of the legislative system for environmental evaluation
				14.5.2.3 Adequacy of an administrative system for social safeguards
				14.5.2.4 Adequacy of regulatory and organizational environment
			14.5.3 Assessment of the program
				14.5.3.1 Benefits for potential environment
				14.5.3.2 Potential environment impacts and risks
		14.6 Gap identification in groundwater management
			14.6.1 Legal gap in groundwater resource management
			14.6.2 Policy-related issues pertaining to groundwater management
		14.7 Counter- and retrospective measures
			14.7.1 Promoting recharge
		14.8 Conclusions
		References
	15 Pesticides and fertilizers contamination of groundwater: Health effects, treatment approaches, and legal aspects
		15.1 Introduction
		15.2 Types of popular pesticides and fertilisers
			15.2.1 Classification based on pesticide function and target pest organism
			15.2.2 Classification based on mode of entry
			15.2.3 Classification based on chemical composition of pesticides
		15.3 Usage of pesticides and fertilisers
		15.4 Pathway to groundwater contamination
			15.4.1 Point sources
			15.4.2 Non-point sources
			15.4.3 Factors affecting the fate of pesticides in soil environment
		15.5 Health effects
			15.5.1 Acute effects
			15.5.2 Chronic effects
			15.5.2.1 Neurological impact
			15.5.2.2 Intoxication
			15.5.2.3 Other effects
		15.6 Monitoring methodology and assessment
			15.6.1 Sampling
			15.6.2 Analytical methodology
				15.6.2.1 Physicochemical separation methods
				15.6.2.2 Detection methods
		15.7 Permissible limit of groundwater quality for pesticides and fertiliser
		15.8 Available treatment technology
			15.8.1 Earthworm-assisted treatment
			15.8.2 Removal of agrochemicals with nanoparticles
			15.8.3 Removal of agrochemicals by aquatic plants
			15.8.4 Fungal-assisted treatment
			15.8.5 Enzymatic degradation
		15.9 Possible management under legal framework
		15.10 Suggested framework for the management of agrochemicals
		15.11 Conclusions References
	16 Nanomaterials and devices for the provision of safe drinking water in rural communities
		16.1 Introduction
		16.2 Chemical of concern for human health and water supply
			16.2.1 Common approaches to water purification
			16.2.2 Pathogens in drinking water
			16.2.3 Chemical pollutants and toxic metals
		16.3 Sensing in rural India
		16.4 Recent advances in filtration with novel nanomaterials
		16.5 Removal by photocatalysis and other degradation methods using nanomaterials
		16.6 Conclusions
		References
	17 An emerging treatment technology: Exploring deep learning and computer vision approach in revealing biosynthesized nanoparticle size for optimization studies
		Abbreviations
		17.1 Introduction
		17.2 Literature review
		17.3 Materials and methods
			17.3.1 Convolution neural network model
				17.3.1.1 Convolution operation
				17.3.1.2 Activation layer
				17.3.1.3 Pooling layer
				17.3.1.4 Flattening layer
				17.3.1.5 Fully connected layer
			17.3.2 Model implementation
				17.3.2.1 Model construction
				17.3.2.2 Compiling the model
				17.3.2.3 Model prediction
		17.4 Results
			17.4.1 Model evaluation
		17.5 Discussion
		17.6 Conclusion
		Acknowledgments
		References
Index




نظرات کاربران