دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Siddhartha Bhattacharyya, Jyoti Sekhar Banerjee, Debashis De سری: Smart Innovation, Systems and Technologies, 335 ISBN (شابک) : 9811982953, 9789811982958 ناشر: Springer سال نشر: 2023 تعداد صفحات: 416 [417] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Confluence of Artificial Intelligence and Robotic Process Automation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تلاقی هوش مصنوعی و اتوماسیون فرآیند رباتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بینش دقیقی از فناوریهای اتوماسیون فرآیند رباتیک (RPA) مرتبط با هوش مصنوعی ارائه میکند که به سازمانها در اجرای رویههای صنعت 4.0 کمک میکند. ابزارهای RPA کارایی خود را با ترکیب اهداف هوش مصنوعی، مانند استفاده از الگوریتمهای شبکه عصبی مصنوعی، تکنیکهای متن کاوی و تکنیکهای پردازش زبان طبیعی برای استخراج اطلاعات و فرآیند متعاقب بهینهسازی و پیشبینی سناریوها به منظور بهبود یک سازمان افزایش میدهند. فرآیندهای عملیاتی و تجاری خوانندگان هدف این کتاب محققان، اساتید، دانشجویان تحصیلات تکمیلی، دانشمندان، سیاست گذاران، متخصصان و توسعه دهندگان شاغل در بخش های IT و ITeS هستند، یعنی افرادی که روی فناوری های نوظهور کار می کنند. این کتاب همچنین بینش ها و ابزارهای پشتیبانی تصمیم لازم را برای مدیرانی که با مشاغل مختلف اتوماسیون محور صنعتی و سازمانی، انتشار دانش، اطلاعات و توسعه خط مشی برای اتوماسیون در سازمان های مختلف آموزشی، دولتی و غیردولتی مرتبط هستند، ارائه می دهد. این کتاب مورد توجه ویژه مربیان کالج و دانشگاه است که دوره های هوش مصنوعی، یادگیری ماشین، بلاک چین، هوش تجاری، هوش شناختی و هوش مغزی را در ظرفیت های مختلف تدریس می کنند.
This book provides a detailed insight into Robotic Process Automation (RPA) technologies linked with AI that will help organizations implement Industry 4.0 procedures. RPA tools enhance their functionality by incorporating AI objectives, such as use of artificial neural network algorithms, text mining techniques, and natural language processing techniques for information extraction and the subsequent process of optimization and forecasting scenarios for the purpose of improving an organization\'s operational and business processes. The target readers of this book are researchers, professors, graduate students, scientists, policymakers, professionals, and developers working in the IT and ITeS sectors, i.e. people who are working on emerging technologies. This book also provides insights and decision support tools necessary for executives concerned with different industrial and organizational automation-centric jobs, knowledge dissemination, information, and policy development for automation in different educational, government, and non-government organizations. This book is of special interest to college and university educators who teach AI, machine learning, blockchain, business intelligence, cognitive intelligence, and brain intelligence courses in different capacities.
Preface Contents Editors and Contributors 1 Intelligent Automation Framework Using AI and RPA: An Introduction 1.1 Introduction 1.2 Literature Review 1.3 What is Robotic Process Automation? 1.3.1 Attended Automation 1.3.2 Unattended Automation 1.3.3 Hybrid RPA 1.4 AI and Industry 4.0 1.5 Comparison Between Standard IT Implementation and RPA 1.6 Conventional Automation versus RPA 1.7 Popular RPA Advantages 1.8 Future of RPA 1.9 Conclusion References 2 Role of RPA in Intelligent Auditing 2.1 Introduction 2.1.1 Comprehending Robotic Process Automation (RPA) 2.1.2 Objectives 2.2 Literature Survey 2.3 Influence of RPA on Accounting and Audit 2.3.1 Automation in Finance 2.4 Intelligent Auditing 2.5 AI in Audit 2.6 Task Organisation and Workflow in Auditing 2.6.1 Context on Workflow Analysis 2.6.2 Audit Workflow 2.6.3 Audit Task Structure 2.6.4 “Auditor-in-the-Loop” IPA Environment 2.7 Implementation of Auditing Agents 2.7.1 How Will the Automation Execute? 2.7.2 Where is My Automation Environment Located? 2.7.3 What Exactly is My Automation Doing? 2.7.4 RPA Security Considerations–Cybersecurity 2.7.5 RPA Data Considerations: Confidentiality 2.8 Future Scope 2.9 Conclusion References 3 Impact of AI and RPA in Banking 3.1 Introduction 3.1.1 Literature Review 3.2 Challenges in the Banking Industry 3.2.1 Changing Expectations of Customers 3.2.2 Fintech Disruption 3.2.3 High Cost to Income Ratio 3.2.4 Complex Regulatory Compliance 3.3 Need for Artificial Intelligence and RPA in Banking 3.3.1 Robotic Process Automation (RPA) 3.3.2 Artificial Intelligence (AI) 3.3.3 Role of Artificial Intelligence and RPA in Banking 3.4 Artificial Intelligence and RPA Use Cases in Banking 3.4.1 Use Case 1—Contact Center and Usage of Chatbots 3.4.2 Use Case 2—Loan Processing 3.4.3 Use Case 3–Fraud Operations 3.5 Impact on the Enterprise to Enable AI and RPA 3.5.1 AI Systems 3.5.2 RPA Systems 3.5.3 Enterprise Changes 3.5.4 Operating Model 3.5.5 Tools Technology and Platform 3.5.6 Process and Methods 3.5.7 Governance and Support 3.5.8 Talent and Skills 3.6 Conclusion References 4 Robotic Process Automation: The Key to Reviving the Supply Chain Processes 4.1 Introduction 4.2 An Introduction to Supply Chain Management 4.2.1 Understanding Supply Chain 4.2.2 Overview of Supply Chain Stages 4.2.3 A Macro View of Selective Supply Chains 4.3 Understanding RPA 4.3.1 What is Robotic Process Automation? 4.3.2 Market for RPA 4.3.3 Overview of RPA Life Cycle 4.3.4 RPA Application 4.3.5 Understanding Process Automatability 4.4 RPA in the Supply Chain Processes 4.4.1 Invoice Processing 4.4.2 Transformation of Legacy System with RPA 4.4.3 Peek into IPA and Hyperautomation 4.4.4 Democratizing Automation with Low Code No Code 4.4.5 Advantages of RPA 4.4.6 Disadvantages of RPA 4.5 Conclusion References 5 Intelligent Document Processing in End-to-End RPA Contexts: A Systematic Literature Review 5.1 Introduction 5.2 Related Works 5.3 Scientific Methodology 5.3.1 Planning 5.3.2 Conducting 5.3.3 Reporting Over the Research Questions 5.4 Industrial Methodology 5.4.1 Planning 5.4.2 Conducting 5.4.3 Reporting over the Research Questions 5.5 Discussion and Limitations 5.6 Conclusion and Future Work References 6 Challenges in Banking and Solving Them Using RPA 6.1 Introduction 6.2 Literature Survey 6.3 RPA in Processing Bank Documents 6.3.1 Automation in Onboarding and Ongoing Servicing of Commercial Banking Clients 6.3.2 Automation in Bank Statement Processing 6.4 RPA in Loan Processing 6.4.1 RPA’s Advantages in Loan Processing 6.4.2 Use Cases of RPA in Loan Processing 6.4.3 The Future of RPA in Loan Processing 6.5 RPA in Credit Card Processing 6.5.1 The Current Challenges in Credit Card Processing 6.5.2 Implementing RPA in Credit Card Processing 6.5.3 Detection of Credit Card Fraud 6.6 RPA in Mortgage Banking 6.6.1 Defining Tasks and Freeing up Manpower 6.7 Conclusion and Future Work References 7 Robotic Process Automation in Healthcare 7.1 Introduction 7.1.1 The Center of Attention 7.1.2 Examining the Use of Robotics in Health Care 7.1.3 Non-disruptiveness 7.1.4 Healthcare RPA: An Overview 7.1.5 RPA Might Have a Positive Impact on the Healthcare Sector 7.1.6 Methodology of RPA 7.2 Literature Survey 7.2.1 Integration of Robotic Process Automation in Organization 7.2.2 Systematic Literature Research Protocol 7.3 The Industry Benefits of RPA 7.4 Effective RPA in Healthcare 7.5 Innovation of RPA in Healthcare 7.6 RPA in Health Insurance 7.7 Advantages of RPA in Health Insurance 7.8 Health Coverage in RPA 7.9 Steps of RPA in Health Insurance Claims 7.10 Conclusion References 8 Intellectual Property Management in Healthcare Using Robotic Process Automation During COVID-19 8.1 Introduction 8.1.1 Objective of the Study 8.1.2 Need for the Research 8.1.3 Research Methodology 8.2 RPA in Healthcare—A Review 8.2.1 RPA Versus Traditional Information Technology-Based Program 8.2.2 RPA in Healthcare Overview 8.2.3 Benefits of RPA in Healthcare Sectors 8.2.4 International Standard of Utilization of RPA in Smart Healthcare During COVID-19 8.2.5 National Standard of Utilization of RPA in Smart Healthcare During COVID-19 8.2.6 Role of RPA in Social Distance During COVID-19 [17] 8.2.7 Automation and Patient Care During COVID-19 [18] 8.2.8 Automation in RPA for Health Insurance During COVID-19 8.3 IP Management in Healthcare System Utilizing RPA 8.3.1 IPR Protections for Digital Health-Tech 8.3.2 Maneuvering the Capital Base of IP Assets 8.3.3 IP Asset Management and Smart Healthcare 8.3.4 Why IP Assets Are Required to Manage? 8.3.5 Scope of Intellectual Property Rights in Robotic Processing Automation 8.3.6 RPA and IP Assets Management 8.3.7 How IPR Management Taken Place Through RPA (Examples) 8.3.8 Challenges of AI and RPA in Smart Healthcare 8.4 Role of IPR in Safeguarding the Challenge of AI and RPA in Smart Healthcare 8.4.1 AI-Robotics and Intellectual Property [28] 8.4.2 Copyright 8.4.3 Patent on Design 8.4.4 Trade Secrets 8.4.5 Solutions for RPA to Meet up Challenges 8.5 Conclusion and Future Scope References 9 RPA Revolution in the Healthcare Industry During COVID-19 9.1 Introduction 9.2 Background 9.3 Robotic Process Automation 9.3.1 Types of RPA 9.3.2 Advantages of RPA 9.3.3 Cognitive RPA 9.3.4 RPA and Artificial Intelligence 9.3.5 Applications of AI-Enabled RPA 9.4 RPA and Value Creation in Healthcare 9.4.1 Ethical Challenges 9.5 Case Studies 9.5.1 Glaucoma Screening 9.5.2 AI-Enabled RPA During COVID-19 9.5.3 Baylor Scott and White Health|Revenue and Financial Stabilization 9.6 Conclusion References 10 Importance of Artificial Intelligence (AI) and Robotic Process Automation (RPA) in the Banking Industry: A Study from an Indian Perspective 10.1 Introduction 10.1.1 Background of the Study 10.1.2 Motivation 10.1.3 Various Ways to Handle the Challenges 10.1.4 Robotic Process Automation (RPA) 10.1.5 Roadmap 10.2 Methodology 10.3 Literature Review 10.4 How Do AI and RPA Work in the Banking Industry? 10.4.1 Example: How AI and RPA Are Working in the Equity Segment of Banking Industry? 10.5 How AI and RPA Can Help in the Conversion of Challenges to Opportunity 10.5.1 Volume 10.5.2 Variety 10.5.3 Diversification 10.5.4 Non-internet Access 10.5.5 Physical Accessibility 10.5.6 Operational Costs 10.5.7 Risk 10.5.8 Customer Experience 10.5.9 24 × 7 Banking 10.5.10 Regulatory Compliance 10.5.11 Fraud 10.5.12 Loan and Credit 10.5.13 Investment 10.5.14 Ethic 10.6 How RPA Can Expedite Repetitive Works 10.7 What Are the Use Cases Getting Implemented in Banks? 10.8 Details of a Few Use Cases Implemented in the Banking Industries 10.8.1 Fraud Analytics 10.8.2 Anomaly Detection 10.8.3 Stock Market’s Growth from New Users’ Point of View 10.8.4 Customer 360: Understand the Customer from All Dimensions 10.8.5 Credit Card Customer Life Cycle 10.9 Ongoing Trends and May Reach to Maturity in a Few Years 10.9.1 Conversational AI (Also One of the Major Solutions by RPA) 10.9.2 Personalised Service with High Accuracy 10.9.3 Data Collection Points 10.9.4 Almost Real-Time Fraud Detection 10.9.5 Ethical AI 10.9.6 Big Spend on AI and RPA 10.10 Limitations: Is AI and RPA Panacea? 10.11 Conclusion References 11 Integration of RPA and AI in Industry 4.0 11.1 Introduction 11.2 Literature Survey 11.3 From Industry 1.0 to Industry 4.0: The Evolution 11.3.1 Industry 1.0 (1750–1830): The Beginning 11.3.2 Industry 2.0 (1850–1914): Building on the Bedrocks 11.3.3 Industry 3.0 (1940–2010): Automatons Taking Over Industries 11.3.4 Industry 4.0 (Present): The Age of AI and RPA 11.3.5 Comparison Between Industry 3.0 and Industry 4.0 11.4 RPA: Catalyst of Industry 4.0 11.5 AI in Industry 4.0 11.6 Integration of RPA and AI: Intelligent Automation 11.7 Benefits of Integrating RPA and AI 11.8 Challenges Faced While Integrating Intelligent Automation Solutions 11.9 Misconceptions About Intelligent Automation (IA) in Industry 4.0 11.10 Use Cases of Intelligent Automation 11.11 RPA Tools with Intelligent Automation (IA) Support 11.12 Conclusion and Future Work References 12 A Comprehensive Review on Artificial Intelligence (AI) and Robotic Process Automation (RPA) for the Development of Smart Cities 12.1 Introduction 12.2 Literature Review 12.3 Impacts of RPA and AI to Develop a Smart City 12.3.1 RPA and AI in Industry 4.0 12.3.2 Importance of AI and RPA in the Banking Industry 12.3.3 The Impact of Road to Intelligent Automation in the Energy Sector 12.3.4 Importance of AI in 5G 12.4 Applications 12.4.1 Role of RPA in Intelligent Auditing 12.4.2 RPA in Digital Forensics (DF) 12.5 Advantages 12.5.1 Role of AI & RPA in Business Model Design for Digital Platform 12.5.2 RPA Emerges as a Threat to Traditional Low Cost Out Sourcing 12.5.3 A Decision-Support System in Selecting Process for RPA 12.5.4 Important Role of AI and RPA Due to Pandemic Situation 12.5.5 Communication Robot for Senior Citizen Based on RPA 12.6 Blessing or Curse 12.7 Smart Environment 12.7.1 Use Cases Where AI Can Develop RPA 12.7.2 Services Applied in Smart Cities 12.7.3 Main Objective of Smart City Services 12.8 Internet of Things (IoT) 12.9 Conclusion References 13 The Existing IT Functions and Robotic Process Automation 13.1 Introduction 13.2 History of Automation 13.2.1 The 1990s: Automation for User Interface Testing 13.2.2 The 2000s: Banking Sector Automation 13.2.3 Timeline 2010–2020: Business Process Automation 13.3 A Brief of RPA 13.3.1 RPA Tools 13.3.2 The Relationship Between AI and RPA 13.3.3 Creating End–End Automation with AI and RPA 13.3.4 The Role of AI and RPA in IT Processes 13.3.5 Benefits of RPA 13.3.6 Phases of Automation 13.3.7 The IT Functions and RPA 13.3.8 Hyper Automation 13.3.9 Benefits of Hyper Automation 13.4 Scope and Future of RPA 13.5 Conclusion References 14 RPA Adoption in Healthcare Application 14.1 Introduction 14.2 Related Work 14.3 Benefits of RPA 14.4 General Applications of RPA 14.5 Need for RPA in Healthcare 14.6 RPA Tools 14.6.1 UiPath 14.6.2 BluePrism 14.6.3 Automation Anywhere 14.6.4 WinAutomation (26–29) 14.7 Research Challenges 14.8 Future Research Directions 14.9 Conclusion References 15 Cognitive IoT Meets Robotic Process Automation: The Unique Convergence Revolutionizing Digital Transformation in the Industry 4.0 Era 15.1 Introduction 15.2 Background and Motivation 15.3 Significance of Cognitive IoT 15.4 Role of RPA in Industrial Automation 15.5 Core Architectural Patterns 15.5.1 Store-Forward Pattern 15.5.2 Streaming Pipeline Pattern 15.5.3 Context Aware Routing and Dispatch Pattern 15.6 Use Cases in Cleantech, Smart Grid, Manufacturing, and Healthcare 15.6.1 Process Automation 15.6.2 Smart Grid 15.6.3 Smart City 15.6.4 Smart Home 15.6.5 Smart Healthcare 15.6.6 Object Detection and Computer Vision 15.7 Conclusion References 16 Confluence of Artificial Intelligence and Robotic Process Automation: Concluding Remarks 16.1 Introduction 16.2 Different Application Areas of RPA 16.2.1 Intelligent Auditing 16.2.2 Smart Education 16.2.3 Cybersecurity 16.2.4 Legal Process Handling 16.2.5 Inventory Management 16.3 Advantages of RPA 16.4 Why RPA is Falling Short of Expectations 16.5 Conclusion References Index