دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Gupta R.K. (ed.)
سری:
ISBN (شابک) : 9780367713355
ناشر: CRC Press
سال نشر: 2022
تعداد صفحات: 430
[431]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Conducting Polymers for Advanced Energy Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انجام پلیمرها برای کاربردهای انرژی پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب جزئیات استفاده از پلیمرهای رسانا و کامپوزیتهای آنها در ابرخازنها، باتریها، فتوولتائیکها و پیلهای سوختی را شرح میدهد که تقریباً کل طیف انرژی را تحت یک عنوان پوشش میدهد. Conducting Polymers for Advanced Energy Applications طیف وسیعی از مواد پیشرفته را بر اساس پلیمرهای رسانا، اصول اولیه و شیمی پشت این مواد برای کاربردهای انرژی پوشش می دهد.
This book details the use of conducting polymers and their composites in supercapacitors, batteries, photovoltaics, and fuel cells, nearly covering the entire spectrum of energy area under one title. Conducting Polymers for Advanced Energy Applications covers a range of advanced materials based on conducting polymers, the fundamentals, and the chemistry behind these materials for energy applications.
Cover Half Title Conducting Polymers for Advanced Energy Applications Copyright Dedication Contents Preface Editor Contributors 1. Introduction: Conductive Polymers from the Nobel Prize to Industrial Applications 1.1 The Beginnings 1.2 The Development of Conductive Polymers with Aromatic Main Chain 1.3 Conduction, Doping, and Processing 1.4 Copolymers, Blends, and Composites 1.5 Applications 1.6 Conclusion References List of Abbreviations 2. Materials and Chemistry of Conducting Polymers 2.1 Introduction 2.2 Chemistry of Conducting Polymers 2.3 CP-Based Materials and Their Applications in Brief 2.4 Conclusions and Current Trends Acknowledgments References. 3. Conducting Polymers for Supercapacitors 3.1 Introduction 3.1.1 Electrochemical Energy Conversion and Storage 3.1.2 Polymers in Materials Science and Electrochemical Energy Technology 3.2 Possible Applications of Intrinsically Conducting Polymers 3.3 ICPs – The Materials 3.3.1 Polyaniline 3.3.2 Polypyrrole 3.3.3 Polythiophene 3.3.4 Common Aspects 3.4 Active Mass 3.4.1 Shape Change 3.4.2 Peeling Off. 3.4.3 Overoxidation 3.5 Part in Composites 3.6 Precursors 3.7 Coatings 3.8 Binders 3.9 Outlook and Perspectives 3.10 Acknowledgments References. 4. Supercapacitors Based on Nanocomposites of Conducting Polymers and Metal Oxides 4.1 Introduction 4.2 Charge Storage Mechanisms 4.2.1 Electrical Double-Layer Capacitors 4.2.2 Redox Type Capacitors 4.2.2.1 Redox Behavior in Battery-Type Materials 4.2.2.2 Redox Behavior in Pseudocapacitive Materials 4.2.3 Hybrid Supercapacitors 4.3 Methods of Characterization of Supercapacitors 4.3.1 Cyclic Voltammetry 4.3.2 Charge-Discharge 4.3.3 Electrochemical Impedance Spectroscopy 4.4 Materials for Supercapacitors 4.4.1 Conducting Polymers 4.4.2 Metal Oxides 4.4.3 Nanocomposites for Supercapacitors 4.4.3.1 Polyaniline-Based Nanocomposites 4.4.3.2 Polypyrrole-Based Nanocomposites 4.4.3.3 Polythiophene-Based Nanocomposites 4.5 Flexible Supercapacitors Based on Nanocomposites 4.6 Conclusion References 5. Nanocomposites of Conducting Polymers and 2D Materials for Supercapacitors 5.1 Introduction 5.2 Supercapacitor Classifications 5.2.1 Electrochemical Double-Layer Capacitors 5.2.2 Pseudocapacitors 5.2.3 Hybrid Capacitors 5.3 Materials for Supercapacitor 5.3.1 Carbon Electrodes 5.3.1.1 Zero-Dimensional Carbon 5.3.1.2 One-Dimensional Carbon 5.3.1.3 Two-Dimensional Carbon 5.3.2 Conducting Polymer Electrodes 5.3.2.1 Polyaniline 5.3.2.2 Polypyrrole 5.3.2.3 Poly(3,4-ethylenedioxythiophene) 5.3.3 Transition Metal Electrodes 5.3.3.1 Transition Metal Oxides 5.3.3.2 Transition Metal Carbonitrides 5.3.3.3 Transition Metal Dichalcogenides 5.4 Nanocomposites for Supercapacitors 5.4.1 Conducting Polymer—2D Carbon Composites 5.4.1.1 Polyaniline-Carbon Composites 5.4.1.2 Polypyrrole-Carbon Composites 5.4.1.3 Poly(3,4-ethylenedioxythiophene)-Carbon Composites 5.4.2 Conducting Polymer—Transition Metal Composites 5.4.2.1 Polyaniline-Transition Metal Composites 5.4.2.2 Polypyrrole-Transition Metal Composites 5.4.2.3 Poly(3,4-ethylenedioxythiophene)-Transition Metal Composites 5.5 Conclusions References 6. Conducting Polymer-Based Flexible Supercapacitors 6.1 Introduction 6.2 Materials and Mechanism of Supercapacitors 6.2.1 Types of Supercapacitors 6.2.1.1 Electrical Double-Layer Capacitors 6.2.1.2 Pseudocapacitors 6.2.1.3 Hybrid Supercapacitors 6.2.2 Charge Storage Mechanisms in Supercapacitors 6.2.2.1 Electrostatic Double-Layer Capacitance 6.2.2.2 Electrochemical Pseudocapacitance 6.3 Supercapacitor Devices and Testing 6.3.1 Types of Device 6.3.1.1 Coin Cells 6.3.1.2 Cylindrical Cell 6.3.1.3 Pouch Cell 6.3.1.4 Flexible Cells 6.3.2 Common Methods for Testing Supercapacitors 6.3.2.1 Cyclic Voltammetry 6.3.2.2 Galvanostatic Charge–Discharge Test. 6.3.2.3 Electrochemical Impedance Spectroscopy 6.3.3 Supercapacitor Device Evaluation 6.3.3.1 Energy and Power Densities 6.3.3.2 Cyclic Stability 6.4 Flexible Supercapacitors from Conducting Polymers 6.4.1 Polyaniline-Based Flexible Supercapacitors 6.4.2 Polypyrrole-Based Flexible Supercapacitors 6.4.3 Polythiophene and Its Derivatives for Flexible Supercapacitors 6.5 Conclusion References 7. Nanofibers of Conducting Polymers for Energy Applications 7.1 Introduction 7.2 Preparation of Nanofibers of Conducting Polymers 7.2.1 Template-Assisted Approach for the Preparation of Nanofibers of Conducting Polymers 7.2.2 Template-Free Approaches for the Development of Nanofibers of Conducting Polymers 7.2.2.1 Interfacial Approach 7.2.2.2 Seeding Approach 7.2.2.3 Electrospinning Approach 7.2.2.4 Radiolysis 7.2.2.5 Electrochemical Nanowire Assembly 7.2.2.6 Soft Lithography 7.3 Characterizations of Nanofibers of Conducting Polymers 7.3.1 SEM and TEM Analysis 7.3.2 FTIR Analysis 7.3.3 X-Ray Diffraction Analysis 7.3.4 Electrochemical Characterization 7.3.5 UV–Visi 7.4 Energy Applications of Conducting Polymer Nanofibers 7.4.1 Supercapacitors 7.4.2 Solar Cells 7.4.3 Batteries 7.4.4 Miscellaneous Energy Applications of Nanofibers of Conducting Polymers 7.5 Conclusions References 8. Conducting Polymers for Organic Solar Cell Applications 8.1 Introduction 8.2 Basics of Conducting Polymer 8.3 Polymers for Different Kind of Solar Cells 8.4 Polymer-Based Organic Solar Cell 8.5 Summary References 9. Hybrid Conducting Polymers for High-Performance Solar Cells 9.1 Introduction 9.2 Polymers in Solar Cells 9.3 Hybrid Conducting Polymers in Solar Cells 9.4 Polymers as Hole Transport Layers 9.5 Polymers as Electron Transport Layers 9.6 Polymers as Counter Electrodes 9.7 Polymers as an Interlayer 9.8 Polymers as Electrolytes 9.9 Conclusion References 10. Nanocomposites Based on Conducting Polymers and Metal Sulfides for Solar Cell Applications 10.1 Introduction 10.2 Description of Solar Cells 10.2.1 Photovoltaic (PV) Solar Cell 10.2.2 Organic Solar Cells 10.3 Conducting Polymer Nanocomposite Applications 10.3.1 Graphene and Its Derivatives – Synthesis and Properties 10.3.1.1 Graphene/Polymer Nanocomposites in Solar Cells 10.3.2 Conducting Polymer-Metal Sulfide Nanocomposites 10.4 Conclusions Acknowledgments References. 11. Thin Films of Conducting Polymers for Photovoltaics 11.1 Introduction 11.2 Unique Properties and Classification of Conducting Polymers 11.3 The Conduction Mechanism in CP 11.3.1 The Electronic Structure of CP 11.3.2 Doping in CP 11.4 Methods for Synthesis of CP 11.5 Role of CP in Photovoltaics 11.5.1 Types of CP-Based OPV Solar Cell Devices 11.5.2 Principle of CP Solar Cells 11.5.3 Characterization Parameters for CP-Based OPV Devices 11.5.4 Recent Developments of CPs in OPV Applications 11.6 Conclusion and Future Aspects Acknowledgments References List of Abbreviations 12. Application of 2D Materials in Conducting Polymers for High Capacity Batteries 12.1 Introduction 12.1.1 Types of Energy Storage Devices 12.1.1.1 Capacitors 12.1.1.2 Supercapacitors 12.1.1.3 Batteries 12.2 Importance of Batteries 12.3 Characteristics and Types of Batteries 12.3.1 Characteristics of Batteries 12.3.1.1 Anode and Cathode 12.3.1.2 Theoretical Voltage 12.3.1.3 Theoretical and Specific Capacity 12.3.1.4 Theoretical and Specific Energy 12.3.1.5 Coulombic Efficiency, C-Rate, and Current Density 12.3.2 Types of Batteries 12.3.2.1 Cells Based on Different Materials 12.3.2.2 Cells Based on Housing 12.4 Electrochemical Methods for Battery Testing. 12.5 Materials for Batteries 12.5.1 Conducting Polymers 12.5.2 Graphene and Composites 12.5.3 MoS2/Polymer Composites 12.5.4 h-BN and Its Composites 12.5.5 Metal-Organic Framework-Based Composites 12.5.6 Electrolytes 12.6 Conclusion References 13. Conducting Polymers in Batteries 13.1 Introduction 13.2 Conducting Polymers 13.3 Why Do Some Polymers Conduct? 13.4 Applications of Conducting Polymers 13.5 Batteries 13.6 Electrochemistry of Batteries 13.7 Types of Batteries 13.8 Primary Batteries/Cells 13.9 Structure of Primary Batteries 13.10 Rechargeable Batteries/Secondary Batteries 13.11 Polymers as Electrolytes 13.12 Polymers as Electrode Materials 13.13 Conducting Polymer Electrode 13.14 Doped Polymers as Electrodes. 13.15 Mixed Polymers as Electrodes for Batteries 13.16 Conducting Polymer/Carbon-Based Material as Electrodes 13.17 Conducting Polymer/Metal Oxide Composites for Electrodes in Batteries 13.18 Hybrid Biopolymer Electrodes 13.19 Conducting Polymers as Binder for Batteries 13.20 Conducting Polymers as Separator in Battery 13.21 Properties and Characterization of Polymeric Battery Materials 13.22 Properties of Polymeric Battery Materials 13.23 Characterization of Polymeric Battery Materials 13.24 Electrochemical Methods 13.24.1 Voltammetric Methods 13.24.2 Electrochemical Impedance Spectroscopy 13.25 Spectroscopic and Spectro-Electrochemical Methods 13.26 Other Advanced Techniques 13.27 Device Characterization Methods 13.27.1 Charging/Discharging Characteristics 13.27.2 Electrochemical Impedance Spectroscopy 13.27.3 Spectroscopic Methods 13.28 Conclusions References 14. The Role of Chalcogenide in Conducting Polymers for Enhanced Battery Performance 14.1 Introduction 14.2 Lithium-Ion Batteries 14.3 Li-S Batteries 14.4 Applications of Conducting Polymers in Battery 14.5 Strategies to Fabricate CP/Chalcogenide Nanocomposites 14.5.1 In Situ Synthesis 14.5.2 Ex Situ Synthesis 14.5.2.1 Solution Mixing Method 14.5.2.2 Electrophoretic Deposition 14.5.3 One Pot Synthesis 14.6 Applications of Conducting Polymer/Metal Chalcogenides in Battery Performance 14.7 Computational Studies of Chalcogenides/Conducting Polymers as Energy Materials 14.8 Conclusion and Future Prospects References List of Abbreviations 15. Conducting Polymers for Flexible Devices 15.1 Introduction 15.2 Conventional Conductive Polymers 15.3 Optoelectronic Devices 15.4 Conductive Polymers in Energy Storage 15.5 Fuel Cell 15.6 Solar Cell 15.7 Medical Applications 15.8 Sensor and Actuator 15.9 EES 15.10 Summary and Outlook References List of Abbreviations 16. Conducting Polymer Nanocomposites for Flexible Devices 16.1 Introduction 16.2 Preparation of Nanocomposites of Conductive Polymer 16.2.1 Electrochemical Methods 16.2.2 Chemical Method 16.2.2.1 Synthesis in Solution: Powders 16.2.2.2 “Layer by Layer” Deposition Method 16.2.2.3 Vapor Phase Synthesis 16.3 Application of NCPs for Flexible Devices in the Energy Sector 16.3.1 Plastic Support 16.3.2 Paper and Textile Carbon Material Support 16.3.3 Flexible Free-Standing Electrode 16.4 Market Potential of NCPs for Flexible Device 16.5 Conclusion and Future Challenges Acknowledgments References List of Abbreviations 17. Conducting Polymers for Electrocatalysts 17.1 Introduction 17.1.1 Oxygen Reduction Reaction 17.1.2 Hydrogen Evolution Reaction 17.1.3 Oxygen Evolution Reaction 17.2 Role of An Electrocatalyst 17.3 Prerequisites of an Electrocatalyst 17.4 Material and Synthesis of CP-Based Electrocatalyst 17.5 Performance Evaluation of CP-Based Electrocatalysts 17.5.1 Cyclic Voltammetry 17.5.2 Electrochemical Active Surface Area 17.5.3 Electrochemical Impedance Spectroscopy 17.5.4 Linear Sweep Voltammetry 17.5.5 Tafel Analysis 17.5.6 Overpotential (η) 17.5.7 Turnover Frequency 17.5.8 Chronoamperometry or Chronopotentiometry 17.6 Application of CP-Based Electrocatalysts 17.7 Conclusion Acknowledgments References 18. Conducting Polymer-Based Microbial Fuel Cells 18.1 Introduction 18.2 Synthesis and Characterization of Conducting Polymer-Based Microbial Fuel Cells 18.3 Application of Conducting Polymer-Based Microbial Fuel Cells 18.4 Conclusion and Future Recommendation Acknowledgments. References 19. Conducting Polymers as Membrane for Fuel Cells 19.1 Introduction 19.2 Factors Affecting the Performance of a DMFC 19.3 Recent Advances in the Use of CPs as PEM Materials 19.3.1 PANI-Based Membranes 19.3.2 PPy-Based Materials 19.3.3 Other Conducting Polymers 19.4 Conclusions and Future Prospects References 20. Synthesis and Characterization of Poly(zwitterionic) Structures for Energy Conversion and Storage 20.1 Introduction 20.2 Intermolecular Interactions and Physiochemical Properties of Zwitterions 20.2.1 Antifouling Property and Hydration Structure of Zwitterions 20.2.2 Antipolyelectrolyte Effect and Sensitivity to Salts 20.3 Overview of PZ and ZI Structures and Synthetic Approaches 20.3.1 PZ Architectures 20.3.2 Atom Transfer Radical Polymerization 20.3.3 Photopolymerization 20.3.4 Recent Trends in the Synthesis of ZI and PZ 20.4 Applications of Zwitterions in the Fields of Energy Storage and Energy Conversion 20.4.1 Supercapacitors 20.4.2 Rechargeable Batteries 20.4.3 Solar Cells 20.4.3.1 Small Molecule Zwitterions for OSCs 20.4.3.2 Polyzwitterions for OSC 20.4.3.3 Zwitterion Materials for Perovskite Solar Cells 20.4.4 ZI and PZ for Organic Light-Emitting Diodes 20.5 Conclusions References 21. High Performance Conducting Polymer Nanocomposites for EMI Shielding Applications 21.1 Introduction 21.2 EMI Shielding Effectiveness 21.2.1 EMI Shielding Mechanisms 21.2.1.1 Shielding by Reflection 21.2.1.2 Shielding by Absorption 21.2.1.3 Shielding by Multiple Internal Reflections 21.3 EMI Shielding Measurement Techniques 21.3.1 Waveguide Method 21.3.2 Coaxial Line Method 21.3.3 Free Space Method 21.4 Poly(aniline) (PANI)-Based EMI Shielding Materials 21.5 Poly(pyrrole) (PPy)-Based EMI Shielding Materials 21.6 Poly(thiophene) (PTh)-Based EMI Shielding Materials 21.7 Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) (PEDOT:PSS)-Based EMI Shielding Materials 21.8 MXene/ICP Hybrids for EMI Shielding and Microwave Absorption 21.9 Conclusion and Future Prospects References 22. Challenges and Future Lookout of Conductive Polymers 22.1 Introduction 22.2 Conductive Polymers’ Major Applications 22.2.1 Energy 22.2.1.1 Energy Harvesting Devices 22.2.1.2 Energy Storage Devices 22.2.2 Biomedical Applications 22.2.3 Detection Devices 22.2.3.1 Sensors 22.2.3.2 Biosensors 22.2.3.3 Actuators 22.2.4 Environmental Remediation 22.3 Progress in Advanced Applications 22.4 Structure–Properties Correlation 22.5 Challenges and Future Lookout 22.6 Conclusion References Index