ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Conducting Polymers for Advanced Energy Applications

دانلود کتاب انجام پلیمرها برای کاربردهای انرژی پیشرفته

Conducting Polymers for Advanced Energy Applications

مشخصات کتاب

Conducting Polymers for Advanced Energy Applications

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9780367713355 
ناشر: CRC Press 
سال نشر: 2022 
تعداد صفحات: 430
[431] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 Mb 

قیمت کتاب (تومان) : 29,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Conducting Polymers for Advanced Energy Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب انجام پلیمرها برای کاربردهای انرژی پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب انجام پلیمرها برای کاربردهای انرژی پیشرفته

این کتاب جزئیات استفاده از پلیمرهای رسانا و کامپوزیت‌های آن‌ها در ابرخازن‌ها، باتری‌ها، فتوولتائیک‌ها و پیل‌های سوختی را شرح می‌دهد که تقریباً کل طیف انرژی را تحت یک عنوان پوشش می‌دهد. Conducting Polymers for Advanced Energy Applications طیف وسیعی از مواد پیشرفته را بر اساس پلیمرهای رسانا، اصول اولیه و شیمی پشت این مواد برای کاربردهای انرژی پوشش می دهد.


توضیحاتی درمورد کتاب به خارجی

This book details the use of conducting polymers and their composites in supercapacitors, batteries, photovoltaics, and fuel cells, nearly covering the entire spectrum of energy area under one title. Conducting Polymers for Advanced Energy Applications covers a range of advanced materials based on conducting polymers, the fundamentals, and the chemistry behind these materials for energy applications.



فهرست مطالب

Cover
Half Title
Conducting Polymers for Advanced Energy Applications
Copyright
Dedication
Contents
Preface
Editor
Contributors
1. Introduction: Conductive Polymers from the Nobel Prize to Industrial Applications
	1.1 The Beginnings
	1.2 The Development of Conductive Polymers with Aromatic Main Chain
	1.3 Conduction, Doping, and Processing
	1.4 Copolymers, Blends, and Composites
	1.5 Applications
	1.6 Conclusion
	References
	List of Abbreviations
2. Materials and Chemistry of Conducting Polymers
	2.1 Introduction
	2.2 Chemistry of Conducting Polymers
	2.3 CP-Based Materials and Their Applications in Brief
	2.4 Conclusions and Current Trends
	Acknowledgments
	References.
3. Conducting Polymers for Supercapacitors
	3.1 Introduction
		3.1.1 Electrochemical Energy Conversion and Storage
		3.1.2 Polymers in Materials Science and Electrochemical Energy Technology
	3.2 Possible Applications of Intrinsically Conducting Polymers
	3.3 ICPs – The Materials
		3.3.1 Polyaniline
		3.3.2 Polypyrrole
		3.3.3 Polythiophene
		3.3.4 Common Aspects
	3.4 Active Mass
		3.4.1 Shape Change
		3.4.2 Peeling Off.
		3.4.3 Overoxidation
	3.5 Part in Composites
	3.6 Precursors
	3.7 Coatings
	3.8 Binders
	3.9 Outlook and Perspectives
	3.10 Acknowledgments
	References.
4. Supercapacitors Based on Nanocomposites of Conducting Polymers and Metal Oxides
	4.1 Introduction
	4.2 Charge Storage Mechanisms
		4.2.1 Electrical Double-Layer Capacitors
		4.2.2 Redox Type Capacitors
			4.2.2.1 Redox Behavior in Battery-Type Materials
			4.2.2.2 Redox Behavior in Pseudocapacitive Materials
		4.2.3 Hybrid Supercapacitors
	4.3 Methods of Characterization of Supercapacitors
		4.3.1 Cyclic Voltammetry
		4.3.2 Charge-Discharge
		4.3.3 Electrochemical Impedance Spectroscopy
	4.4 Materials for Supercapacitors
		4.4.1 Conducting Polymers
		4.4.2 Metal Oxides
		4.4.3 Nanocomposites for Supercapacitors
			4.4.3.1 Polyaniline-Based Nanocomposites
			4.4.3.2 Polypyrrole-Based Nanocomposites
			4.4.3.3 Polythiophene-Based Nanocomposites
	4.5 Flexible Supercapacitors Based on Nanocomposites
	4.6 Conclusion
	References
5. Nanocomposites of Conducting Polymers and 2D Materials for Supercapacitors
	5.1 Introduction
	5.2 Supercapacitor Classifications
		5.2.1 Electrochemical Double-Layer Capacitors
		5.2.2 Pseudocapacitors
		5.2.3 Hybrid Capacitors
	5.3 Materials for Supercapacitor
		5.3.1 Carbon Electrodes
			5.3.1.1 Zero-Dimensional Carbon
			5.3.1.2 One-Dimensional Carbon
			5.3.1.3 Two-Dimensional Carbon
		5.3.2 Conducting Polymer Electrodes
			5.3.2.1 Polyaniline
			5.3.2.2 Polypyrrole
			5.3.2.3 Poly(3,4-ethylenedioxythiophene)
		5.3.3 Transition Metal Electrodes
			5.3.3.1 Transition Metal Oxides
			5.3.3.2 Transition Metal Carbonitrides
			5.3.3.3 Transition Metal Dichalcogenides
	5.4 Nanocomposites for Supercapacitors
		5.4.1 Conducting Polymer—2D Carbon Composites
			5.4.1.1 Polyaniline-Carbon Composites
			5.4.1.2 Polypyrrole-Carbon Composites
			5.4.1.3 Poly(3,4-ethylenedioxythiophene)-Carbon Composites
		5.4.2 Conducting Polymer—Transition Metal Composites
			5.4.2.1 Polyaniline-Transition Metal Composites
			5.4.2.2 Polypyrrole-Transition Metal Composites
			5.4.2.3 Poly(3,4-ethylenedioxythiophene)-Transition Metal Composites
	5.5 Conclusions
	References
6. Conducting Polymer-Based Flexible Supercapacitors
	6.1 Introduction
	6.2 Materials and Mechanism of Supercapacitors
		6.2.1 Types of Supercapacitors
			6.2.1.1 Electrical Double-Layer Capacitors
			6.2.1.2 Pseudocapacitors
			6.2.1.3 Hybrid Supercapacitors
		6.2.2 Charge Storage Mechanisms in Supercapacitors
			6.2.2.1 Electrostatic Double-Layer Capacitance
			6.2.2.2 Electrochemical Pseudocapacitance
	6.3 Supercapacitor Devices and Testing
		6.3.1 Types of Device
			6.3.1.1 Coin Cells
			6.3.1.2 Cylindrical Cell
			6.3.1.3 Pouch Cell
			6.3.1.4 Flexible Cells
		6.3.2 Common Methods for Testing Supercapacitors
			6.3.2.1 Cyclic Voltammetry
			6.3.2.2 Galvanostatic Charge–Discharge Test.
			6.3.2.3 Electrochemical Impedance Spectroscopy
		6.3.3 Supercapacitor Device Evaluation
			6.3.3.1 Energy and Power Densities
			6.3.3.2 Cyclic Stability
	6.4 Flexible Supercapacitors from Conducting Polymers
		6.4.1 Polyaniline-Based Flexible Supercapacitors
		6.4.2 Polypyrrole-Based Flexible Supercapacitors
		6.4.3 Polythiophene and Its Derivatives for Flexible Supercapacitors
	6.5 Conclusion
	References
7. Nanofibers of Conducting Polymers for Energy Applications
	7.1 Introduction
	7.2 Preparation of Nanofibers of Conducting Polymers
		7.2.1 Template-Assisted Approach for the Preparation of Nanofibers of Conducting Polymers
		7.2.2 Template-Free Approaches for the Development of Nanofibers of Conducting Polymers
			7.2.2.1 Interfacial Approach
			7.2.2.2 Seeding Approach
			7.2.2.3 Electrospinning Approach
			7.2.2.4 Radiolysis
			7.2.2.5 Electrochemical Nanowire Assembly
			7.2.2.6 Soft Lithography
	7.3 Characterizations of Nanofibers of Conducting Polymers
		7.3.1 SEM and TEM Analysis
		7.3.2 FTIR Analysis
		7.3.3 X-Ray Diffraction Analysis
		7.3.4 Electrochemical Characterization
		7.3.5 UV–Visi
	7.4 Energy Applications of Conducting Polymer Nanofibers
		7.4.1 Supercapacitors
		7.4.2 Solar Cells
		7.4.3 Batteries
		7.4.4 Miscellaneous Energy Applications of Nanofibers of Conducting Polymers
	7.5 Conclusions
	References
8. Conducting Polymers for Organic Solar Cell Applications
	8.1 Introduction
	8.2 Basics of Conducting Polymer
	8.3 Polymers for Different Kind of Solar Cells
	8.4 Polymer-Based Organic Solar Cell
	8.5 Summary
	References
9. Hybrid Conducting Polymers for High-Performance Solar Cells
	9.1 Introduction
	9.2 Polymers in Solar Cells
	9.3 Hybrid Conducting Polymers in Solar Cells
	9.4 Polymers as Hole Transport Layers
	9.5 Polymers as Electron Transport Layers
	9.6 Polymers as Counter Electrodes
	9.7 Polymers as an Interlayer
	9.8 Polymers as Electrolytes
	9.9 Conclusion
	References
10. Nanocomposites Based on Conducting Polymers and Metal Sulfides for Solar Cell Applications
	10.1 Introduction
	10.2 Description of Solar Cells
		10.2.1 Photovoltaic (PV) Solar Cell
		10.2.2 Organic Solar Cells
	10.3 Conducting Polymer Nanocomposite Applications
		10.3.1 Graphene and Its Derivatives – Synthesis and Properties
			10.3.1.1 Graphene/Polymer Nanocomposites in Solar Cells
		10.3.2 Conducting Polymer-Metal Sulfide Nanocomposites
	10.4 Conclusions
	Acknowledgments
	References.
11. Thin Films of Conducting Polymers for Photovoltaics
	11.1 Introduction
	11.2 Unique Properties and Classification of Conducting Polymers
	11.3 The Conduction Mechanism in CP
		11.3.1 The Electronic Structure of CP
		11.3.2 Doping in CP
	11.4 Methods for Synthesis of CP
	11.5 Role of CP in Photovoltaics
		11.5.1 Types of CP-Based OPV Solar Cell Devices
		11.5.2 Principle of CP Solar Cells
		11.5.3 Characterization Parameters for CP-Based OPV Devices
		11.5.4 Recent Developments of CPs in OPV Applications
	11.6 Conclusion and Future Aspects
	Acknowledgments
	References
	List of Abbreviations
12. Application of 2D Materials in Conducting Polymers for High Capacity Batteries
	12.1 Introduction
		12.1.1 Types of Energy Storage Devices
			12.1.1.1 Capacitors
			12.1.1.2 Supercapacitors
			12.1.1.3 Batteries
	12.2 Importance of Batteries
	12.3 Characteristics and Types of Batteries
		12.3.1 Characteristics of Batteries
			12.3.1.1 Anode and Cathode
			12.3.1.2 Theoretical Voltage
			12.3.1.3 Theoretical and Specific Capacity
			12.3.1.4 Theoretical and Specific Energy
			12.3.1.5 Coulombic Efficiency, C-Rate, and Current Density
		12.3.2 Types of Batteries
			12.3.2.1 Cells Based on Different Materials
			12.3.2.2 Cells Based on Housing
	12.4 Electrochemical Methods for Battery Testing.
	12.5 Materials for Batteries
		12.5.1 Conducting Polymers
		12.5.2 Graphene and Composites
		12.5.3 MoS2/Polymer Composites
		12.5.4 h-BN and Its Composites
		12.5.5 Metal-Organic Framework-Based Composites
		12.5.6 Electrolytes
	12.6 Conclusion
	References
13. Conducting Polymers in Batteries
	13.1 Introduction
	13.2 Conducting Polymers
	13.3 Why Do Some Polymers Conduct?
	13.4 Applications of Conducting Polymers
	13.5 Batteries
	13.6 Electrochemistry of Batteries
	13.7 Types of Batteries
	13.8 Primary Batteries/Cells
	13.9 Structure of Primary Batteries
	13.10 Rechargeable Batteries/Secondary Batteries
	13.11 Polymers as Electrolytes
	13.12 Polymers as Electrode Materials
	13.13 Conducting Polymer Electrode
	13.14 Doped Polymers as Electrodes.
	13.15 Mixed Polymers as Electrodes for Batteries
	13.16 Conducting Polymer/Carbon-Based Material as Electrodes
	13.17 Conducting Polymer/Metal Oxide Composites for Electrodes in Batteries
	13.18 Hybrid Biopolymer Electrodes
	13.19 Conducting Polymers as Binder for Batteries
	13.20 Conducting Polymers as Separator in Battery
	13.21 Properties and Characterization of Polymeric Battery Materials
	13.22 Properties of Polymeric Battery Materials
	13.23 Characterization of Polymeric Battery Materials
	13.24 Electrochemical Methods
		13.24.1 Voltammetric Methods
		13.24.2 Electrochemical Impedance Spectroscopy
	13.25 Spectroscopic and Spectro-Electrochemical Methods
	13.26 Other Advanced Techniques
	13.27 Device Characterization Methods
		13.27.1 Charging/Discharging Characteristics
		13.27.2 Electrochemical Impedance Spectroscopy
		13.27.3 Spectroscopic Methods
	13.28 Conclusions
	References
14. The Role of Chalcogenide in Conducting Polymers for Enhanced Battery Performance
	14.1 Introduction
	14.2 Lithium-Ion Batteries
	14.3 Li-S Batteries
	14.4 Applications of Conducting Polymers in Battery
	14.5 Strategies to Fabricate CP/Chalcogenide Nanocomposites
		14.5.1 In Situ Synthesis
		14.5.2 Ex Situ Synthesis
			14.5.2.1 Solution Mixing Method
			14.5.2.2 Electrophoretic Deposition
		14.5.3 One Pot Synthesis
	14.6 Applications of Conducting Polymer/Metal Chalcogenides in Battery Performance
	14.7 Computational Studies of Chalcogenides/Conducting Polymers as Energy Materials
	14.8 Conclusion and Future Prospects
	References
	List of Abbreviations
15. Conducting Polymers for Flexible Devices
	15.1 Introduction
	15.2 Conventional Conductive Polymers
	15.3 Optoelectronic Devices
	15.4 Conductive Polymers in Energy Storage
	15.5 Fuel Cell
	15.6 Solar Cell
	15.7 Medical Applications
	15.8 Sensor and Actuator
	15.9 EES
	15.10 Summary and Outlook
	References
	List of Abbreviations
16. Conducting Polymer Nanocomposites for Flexible Devices
	16.1 Introduction
	16.2 Preparation of Nanocomposites of Conductive Polymer
		16.2.1 Electrochemical Methods
		16.2.2 Chemical Method
			16.2.2.1 Synthesis in Solution: Powders
			16.2.2.2 “Layer by Layer” Deposition Method
			16.2.2.3 Vapor Phase Synthesis
	16.3 Application of NCPs for Flexible Devices in the Energy Sector
		16.3.1 Plastic Support
		16.3.2 Paper and Textile Carbon Material Support
		16.3.3 Flexible Free-Standing Electrode
	16.4 Market Potential of NCPs for Flexible Device
	16.5 Conclusion and Future Challenges
	Acknowledgments
	References
	List of Abbreviations
17. Conducting Polymers for Electrocatalysts
	17.1 Introduction
		17.1.1 Oxygen Reduction Reaction
		17.1.2 Hydrogen Evolution Reaction
		17.1.3 Oxygen Evolution Reaction
	17.2 Role of An Electrocatalyst
	17.3 Prerequisites of an Electrocatalyst
	17.4 Material and Synthesis of CP-Based Electrocatalyst
	17.5 Performance Evaluation of CP-Based Electrocatalysts
		17.5.1 Cyclic Voltammetry
		17.5.2 Electrochemical Active Surface Area
		17.5.3 Electrochemical Impedance Spectroscopy
		17.5.4 Linear Sweep Voltammetry
		17.5.5 Tafel Analysis
		17.5.6 Overpotential (η)
		17.5.7 Turnover Frequency
		17.5.8 Chronoamperometry or Chronopotentiometry
	17.6 Application of CP-Based Electrocatalysts
	17.7 Conclusion
	Acknowledgments
	References
18. Conducting Polymer-Based Microbial Fuel Cells
	18.1 Introduction
	18.2 Synthesis and Characterization of Conducting Polymer-Based Microbial Fuel Cells
	18.3 Application of Conducting Polymer-Based Microbial Fuel Cells
	18.4 Conclusion and Future Recommendation
	Acknowledgments.
	References
19. Conducting Polymers as Membrane for Fuel Cells
	19.1 Introduction
	19.2 Factors Affecting the Performance of a DMFC
	19.3 Recent Advances in the Use of CPs as PEM Materials
		19.3.1 PANI-Based Membranes
		19.3.2 PPy-Based Materials
		19.3.3 Other Conducting Polymers
	19.4 Conclusions and Future Prospects
	References
20. Synthesis and Characterization of Poly(zwitterionic) Structures for Energy Conversion and Storage
	20.1 Introduction
	20.2 Intermolecular Interactions and Physiochemical Properties of Zwitterions
		20.2.1 Antifouling Property and Hydration Structure of Zwitterions
		20.2.2 Antipolyelectrolyte Effect and Sensitivity to Salts
	20.3 Overview of PZ and ZI Structures and Synthetic Approaches
		20.3.1 PZ Architectures
		20.3.2 Atom Transfer Radical Polymerization
		20.3.3 Photopolymerization
		20.3.4 Recent Trends in the Synthesis of ZI and PZ
	20.4 Applications of Zwitterions in the Fields of Energy Storage and Energy Conversion
		20.4.1 Supercapacitors
		20.4.2 Rechargeable Batteries
		20.4.3 Solar Cells
			20.4.3.1 Small Molecule Zwitterions for OSCs
			20.4.3.2 Polyzwitterions for OSC
			20.4.3.3 Zwitterion Materials for Perovskite Solar Cells
		20.4.4 ZI and PZ for Organic Light-Emitting Diodes
	20.5 Conclusions
	References
21. High Performance Conducting Polymer Nanocomposites for EMI Shielding Applications
	21.1 Introduction
	21.2 EMI Shielding Effectiveness
		21.2.1 EMI Shielding Mechanisms
			21.2.1.1 Shielding by Reflection
			21.2.1.2 Shielding by Absorption
			21.2.1.3 Shielding by Multiple Internal Reflections
	21.3 EMI Shielding Measurement Techniques
		21.3.1 Waveguide Method
		21.3.2 Coaxial Line Method
		21.3.3 Free Space Method
	21.4 Poly(aniline) (PANI)-Based EMI Shielding Materials
	21.5 Poly(pyrrole) (PPy)-Based EMI Shielding Materials
	21.6 Poly(thiophene) (PTh)-Based EMI Shielding Materials
	21.7 Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) (PEDOT:PSS)-Based EMI Shielding Materials
	21.8 MXene/ICP Hybrids for EMI Shielding and Microwave Absorption
	21.9 Conclusion and Future Prospects
	References
22. Challenges and Future Lookout of Conductive Polymers
	22.1 Introduction
	22.2 Conductive Polymers’ Major Applications
		22.2.1 Energy
			22.2.1.1 Energy Harvesting Devices
			22.2.1.2 Energy Storage Devices
		22.2.2 Biomedical Applications
		22.2.3 Detection Devices
			22.2.3.1 Sensors
			22.2.3.2 Biosensors
			22.2.3.3 Actuators
		22.2.4 Environmental Remediation
	22.3 Progress in Advanced Applications
	22.4 Structure–Properties Correlation
	22.5 Challenges and Future Lookout
	22.6 Conclusion
	References
Index




نظرات کاربران