دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: هندسه و توپولوژی ویرایش: 1 نویسندگان: J. P. May سری: Chicago Lectures in Mathematics ISBN (شابک) : 9780226511832, 0226511839 ناشر: University Of Chicago Press سال نشر: 1999 تعداد صفحات: 251 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 1 مگابایت
در صورت تبدیل فایل کتاب Concise course in algebraic topology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دوره مختصر در توپولوژی جبری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
توپولوژی جبری بخشی اساسی از ریاضیات مدرن است و برخی دانش در این زمینه برای هر کار پیشرفته مرتبط با هندسه، از جمله خود توپولوژی، هندسه دیفرانسیل، هندسه جبری و گروه های دروغ ضروری است. این کتاب درمان مفصلی از توپولوژی جبری را هم برای معلمان موضوع و هم برای دانشجویان کارشناسی ارشد ریاضیات که در این زمینه تخصص دارند و یا در زمینه های دیگر ادامه می دهند، ارائه می دهد. رویکرد جی پیتر می منعکس کننده تحولات داخلی عظیم در توپولوژی جبری در چند دهه گذشته است که بیشتر آنها برای ریاضیدانان در زمینه های دیگر تا حد زیادی ناشناخته هستند. اما او همچنین ارائه های کلاسیک موضوعات مختلف را در صورت لزوم حفظ می کند. بیشتر فصل ها با مسائلی پایان می یابند که مفاهیم ارائه شده را بیشتر بررسی و اصلاح می کنند. چهار فصل پایانی طرحهایی از حوزههای قابل توجهی از توپولوژی جبری ارائه میکند که معمولاً از متون مقدماتی حذف میشوند، و کتاب با فهرستی از خواندنهای پیشنهادی برای کسانی که علاقهمند به بررسی بیشتر در این زمینه هستند، به پایان میرسد.
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Title Contents Introduction Ch1. The fundamental group and some of its applications 1. What is algebraic topology? 2. The fundamental group 3. Dependence on the basepoint 4. Homotopy invariance 5. Calculations: π1(R) = 0 and π1(S1) = Z 6. The Brouwer fixed point theorem 7. The fundamental theorem of algebra Ch2. Categorical language and the van Kampen theorem 1. Categories 2. Functors 3. Natural transformations 4. Homotopy categories and homotopy equivalences 5. The fundamental groupoid 6. Limits and colimits 7. The van Kampen theorem 8. Examples of the van Kampen theorem Ch3. Covering spaces 1. The definition of covering spaces 2. The unique path lifting property 3. Coverings of groupoids 4. Group actions and orbit categories 5. The classification of coverings of groupoids 6. The construction of coverings of groupoids 7. The classification of coverings of spaces 8. The construction of coverings of spaces Ch4. Graphs 1. The definition of graphs 2. Edge paths and trees 3. The homotopy types of graphs 4. Covers of graphs and Euler characteristics 5. Applications to groups Ch5. Compactly generated spaces 1. The definition of compactly generated spaces 2. The category of compactly generated spaces Ch6. Cofibrations 1. The definition of cofibrations 2. Mapping cylinders and cofibrations 3. Replacing maps by cofibrations 4. A criterion for a map to be a cofibration 5. Cofiber homotopy equivalence Ch7. Fibrations 1. The definition of fibrations 2. Path lifting functions and fibrations 3. Replacing maps by fibrations 4. A criterion for a map to be a fibration 5. Fiber homotopy equivalence 6. Change of fiber Ch8. Based cofiber and fiber sequences 1. Based homotopy classes of maps 2. Cones, suspensions, paths, loops 3. Based cofibrations 4. Cofiber sequences 5. Based fibrations 6. Fiber sequences 7. Connections between cofiber and fiber sequences Ch9. Higher homotopy groups 1. The definition of homotopy groups 2. Long exact sequences associated to pairs 3. Long exact sequences associated to fibrations 4. A few calculations 5. Change of basepoint 6. n-Equivalences, weak equivalences, and a technical lemma Ch10. CW complexes 1. The definition and some examples of CW complexes 2. Some constructions on CW complexes 3. HELP and the Whitehead theorem 4. The cellular approximation theorem 5. Approximation of spaces by CW complexes 6. Approximation of pairs by CW pairs 7. Approximation of excisive triads by CW triads Ch11. The homotopy excision and suspension theorems 1. Statement of the homotopy excision theorem 2. The Freudenthal suspension theorem 3. Proof of the homotopy excision theorem Ch12. A little homological algebra 1. Chain complexes 2. Maps and homotopies of maps of chain complexes 3. Tensor products of chain complexes 4. Short and long exact sequences Ch13. Axiomatic and cellular homology theory 1. Axioms for homology 2. Cellular homology 3. Verification of the axioms 4. The cellular chains of products 5. Some examples: T, K, and RP^n Ch14. Derivations of properties from the axioms 1. Reduced homology; based versus unbased spaces 2. Cofibrations and the homology of pairs 3. Suspension and the long exact sequence of pairs 4. Axioms for reduced homology 5. Mayer-Vietoris sequences 6. The homology of colimits Ch15. The Hurewicz and uniqueness theorems 1. The Hurewicz theorem 2. The uniqueness of the homology of CW complexes Ch16. Singular homology theory 1. The singular chain complex 2. Geometric realization 3. Proofs of the theorems 4. Simplicial objects in algebraic topology 5. Classifying spaces and K(π,n)s Ch17. Some more homological algebra 1. Universal coefficients in homology 2. The Kunneth theorem 3. Hom functors and universal coefficients in cohomology 4. Proof of the universal coefficient theorem 5. Relations between ⊗ and Hom Ch18. Axiomatic and cellular cohomology theory 1. Axioms for cohomology 2. Cellular and singular cohomology 3. Cup products in cohomology 4. An example: RP^n and the Borsuk-Ulam theorem 5. Obstruction theory Ch19. Derivations of properties from the axioms 1. Reduced cohomology groups and their properties 2. Axioms for reduced cohomology 3. Mayer-Vietoris sequences in cohomology 4. Lim1 and the cohomology of colimits 5. The uniqueness of the cohomology of CW complexes Ch20. The Poincar´e duality theorem 1. Statement of the theorem 2. The definition of the cap product 3. Orientations and fundamental classes 4. The proof of the vanishing theorem 5. The proof of the Poincar´e duality theorem 6. The orientation cover Ch21. The index of manifolds; manifolds with boundary 1. The Euler characteristic of compact manifolds 2. The index of compact oriented manifolds 3. Manifolds with boundary 4. Poincare duality for manifolds with boundary 5. The index of manifolds that are boundaries Ch22. Homology, cohomology, and K(π,n)s 1. K(π, n)s and homology 2. K(π, n)s and cohomology 3. Cup and cap products 4. Postnikov systems 5. Cohomology operations Ch23. Characteristic classes of vector bundles 1. The classification of vector bundles 2. Characteristic classes for vector bundles 3. Stiefel-Whitney classes of manifolds 4. Characteristic numbers of manifolds 5. Thom spaces and the Thom isomorphism theorem 6. The construction of the Stiefel-Whitney classes 7. Chern, Pontryagin, and Euler classes 8. A glimpse at the general theory Ch24. An introduction to K-theory 1. The definition of K-theory 2. The Bott periodicity theorem 3. The splitting principle and the Thom isomorphism 4. The Chern character; almost complex structures on spheres 5. The Adams operations 6. The Hopf invariant one problem and its applications Ch25. An introduction to cobordism 1. The cobordism groups of smooth closed manifolds 2. Sketch proof that N∗ is isomorphic to π∗(TO) 3. Prespectra and the algebra H∗(TO; Z2) 4. The Steenrod algebra and its coaction on H∗(TO) 5. The relationship to Stiefel-Whitney numbers 6. Spectra and the computation of π∗(TO) = π∗(MO) 7. An introduction to the stable category Suggestions for further reading