دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: C. R. Rao (editor), Hrishikesh D. Vinod (editor) سری: Handbook of Statistics 41 ISBN (شابک) : 0444643117, 9780444643117 ناشر: North Holland سال نشر: 2019 تعداد صفحات: 311 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Conceptual Econometrics Using R (Handbook of Statistics) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اقتصاد سنجی مفهومی با استفاده از R (کتاب راهنمای آمار) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اقتصاد سنجی مفهومی با استفاده از R، جلد 41 اطلاعات پیشرفته ای را در مورد موضوعات مهم در اقتصاد سنجی ارائه می دهد، از جمله نظریه بازی های کمی، GARCH چند متغیره، مرزهای تصادفی، پاسخ های کسری، تست مشخصات و مدل انتخاب، آزمایش برونزایی، تحلیل و پیشبینی علّی، مدلهای GMM، حبابها و بحرانهای دارایی، سرمایهگذاریهای شرکتی، طبقهبندی، پیشبینی، مشکلات غیراستاندارد، ادغام، بهرهوری و جهشها و جهشهای مشترک در بازار مالی و سایر موارد.
Conceptual Econometrics Using R, Volume 41 provides state-of-the-art information on important topics in econometrics, including quantitative game theory, multivariate GARCH, stochastic frontiers, fractional responses, specification testing and model selection, exogeneity testing, causal analysis and forecasting, GMM models, asset bubbles and crises, corporate investments, classification, forecasting, nonstandard problems, cointegration, productivity and financial market jumps and co-jumps, among others.
Front Matter Copyright Contributors Preface Finite-sample inference and nonstandard asymptotics with Monte Carlo tests and R Introduction Monte Carlo tests with continuous and discrete test statistics Pivotal Monte Carlo tests in R Example: Two-sample goodness-of-fit test Maximized Monte Carlo tests Asymptotic MMC tests MMC tests in R Global Optimization gridSearch GenSA psoptim GA Optimal Choice MMC tests: Examples Behrens-Fisher problem Unit root tests in autoregressive models Framework Code Conclusion Acknowledgments References New exogeneity tests and causal paths Introduction Computational agenda and decision rules Kernel regression review Counterfactuals in kernel regressions Kernel regression and consistency Cowles commission SEMs Need for alternative exogeneity tests Weak exogeneity and its limitations Hausman-Wu test and its limitations Limitations of IV-based tests OLS super-consistency implications CC-SEM implications for stochastic kernel causality Stochastic kernel causality by three criteria First criterion Cr1 for XiXj Second criterion Cr2 for XiXj Third criterion Cr3 for XiXj Numerical evaluation of Cr1 and Cr2 Stochastic dominance of four Orders Weighted sum of signs of Cu(sd1) to Cu(sd4) Unanimity index summarizing signs Review of decision rule computations Simulation for checking decision rules A bootstrap exogeneity test Summarizing sampling distribution of ui Application example Variables affecting term spread Bootstrap inference on Estimated Causality Paths Summary and final remarks Acknowledgments Review of graph theory For R code References Adjusting for bias in long horizon regressions using R Introduction Long horizon regressions Bias adjustment for long horizon regressions Introduction R function longhor1 R function longhor R functions proc_vb_ma0 and proc_vb_maq R code for an empirical application Acknowledgment References Hypothesis testing, specification testing, and model selection based on the MCMC output using R* Introduction MCMC and its implementation in R Hypothesis testing based on the MCMC output Hypothesis testing under decision theory The choice of loss function for hypothesis testing BFs and 0-1 loss function Bernardo and Rueda (2002) and the KL loss function Li and Yu (2012) and the Q loss function Li et al. (2014) and LR-type loss function Li et al. (2015) and LM-type loss function Li et al. (2019) and Wald-type loss function Specification testing based on the MCMC output Model selection based on the MCMC output DIC for regular models Bayesian predictive distribution as the loss function Integrated DIC for latent variable models Computing IDIC for latent variable models Empirical illustrations Statistical inference in asset pricing models Hypothesis testing for asset pricing models Specification testing for asset pricing models Model comparison for asset pricing models Statistical inference in stochastic volatility models Hypothesis testing for stochastic volatility models Specification testing for SV models Model comparison of SV models Concluding remarks References Further reading Dynamic panel GMM using R* Introduction A dynamic panel model with macro drivers R code for dynamic panel estimation Data generation Within-group estimation Difference GMM System GMM Code verification and comparison Simulation results Conclusion References Further reading Vector autoregressive moving average models Introduction Vector autoregressive moving average models Identifiability of VARMA systems State space models Identifiability of state space models Maximum likelihood estimation Initial estimates Estimation of VARMA models-The Hannan, Rissanen, Kavalieris procedure Estimation of state space models-The CCA subspace method Model selection Discussion and notes Summary Acknowledgement References Multivariate GARCH models for large-scale applications: A survey Introduction Multivariate generalization of GARCH models Multivariate distributions Multivariate Normal Multivariate Student Multivariate Laplace Multivariate Generalized Hyperbolic distribution Copula distributions Generalized Orthogonal GARCH models Conditional correlation GARCH models BIP and GAS MGARCH models MGARCH models using high-frequency returns Realized BEKK HEAVY Realized DCC Other approaches Illustration Conclusion References Modeling fractional responses using R Introduction The base case: Cross-sectional data and no unobserved heterogeneity Conditional mean models Two-part models Partial effects Specification tests Linearized- and exponential-fractional estimators Framework Neglected heterogeneity Endogenous regressors Smearing estimation of partial effects Panel data estimators Framework Pooled random and fixed effects estimators Fixed effects estimators based on quasi- and mean-differences Correlated random effects estimators Future developments Acknowledgments References Quantitative game theory applied to economic problems Introduction Cooperative game theory The core The Shapley value The nucleolus Voting power Marketing and game theory The classic consumer theory Attribution models Sales game Claims problems Claims rules Obtaining fishing quotas Concluding remarks Acknowledgments References Index A B C D E F G H I J K L M N O P Q R S T U V W