دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Hossam Mahmoud Ahmad Fahmy
سری: Signals and Communication Technology
ISBN (شابک) : 9783030580148, 9783030580155
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 752
[739]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 37 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Concepts, Applications, Experimentation and Analysis of Wireless Sensor Networks: Concepts, Applications, Experimentation and Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مفاهیم ، برنامه ها ، آزمایش و تجزیه و تحلیل شبکه های حسگر بی سیم: مفاهیم ، برنامه ها ، آزمایش و تجزیه و تحلیل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویرایش جدید این کتاب پرطرفدار به یک کتاب درسی کاربردی تبدیل شده است که بر اصول شبکههای حسگر بیسیم (WSN)، کاربردهای آنها، پروتکلها و استانداردهای آنها و ابزارهای تحلیل و آزمایش تمرکز دارد. دقت زیادی به تعاریف و اصطلاحات شده است. برای اینکه WSN ها احساس و دیده شوند، فناوری های اتخاذ شده و همچنین سازندگان آنها به تفصیل ارائه شده اند. در کتاب های مقدماتی شبکه های کامپیوتری، توالی فصل ها از معماری پایین به بالا یا از بالا به پایین پروتکل هفت لایه پیروی می کند. این کتاب چند مرحله بعد شروع میشود، با فصلهایی که بر اساس اهمیت یک موضوع برای توضیح مفاهیم و مسائل شبکههای حسگر بیسیم (WSN) مرتب شدهاند. با چنین عمقی، این کتاب برای مخاطبان گسترده ای در نظر گرفته شده است، به این معناست که هم برای دانشجویان ارشد، هم برای دانشجویان ارشد، هم برای محققان و هم برای پزشکان، کمک کننده و محرک باشد. مفاهیم و کاربردهای مربوط به WSN ها ارائه می شوند، تحقیقات و موضوعات عملی توسط ادبیات مناسب پشتیبانی می شوند و روندهای جدید تحت تمرکز قرار می گیرند. برای دانشجویان مقطع کارشناسی ارشد، خوانندگان را با مبانی مفهومی، برنامه های کاربردی و اجرای پروژه های عملی آشنا می کند. برای دانشجویان و محققین فارغ التحصیل، پروتکل های لایه انتقال و پروتکل های لایه ای متقابل ارائه شده است و بسترهای آزمایش و شبیه سازها باید بر روش ها و ابزارهای تحلیل برای WSN ها تأکید کنند. برای پزشکان، علاوه بر کاربردها و استقرار، سازندگان و اجزای WSN در چندین پلت فرم و بستر آزمایش به طور کامل مورد بررسی قرار می گیرند.
The new edition of this popular book has been transformed into a hands-on textbook, focusing on the principles of wireless sensor networks (WSNs), their applications, their protocols and standards, and their analysis and test tools; a meticulous care has been accorded to the definitions and terminology. To make WSNs felt and seen, the adopted technologies as well as their manufacturers are presented in detail. In introductory computer networking books, chapters sequencing follows the bottom up or top down architecture of the seven layers protocol. This book starts some steps later, with chapters ordered based on a topic’s significance to the elaboration of wireless sensor networks (WSNs) concepts and issues. With such a depth, this book is intended for a wide audience, it is meant to be a helper and motivator, for both the senior undergraduates, postgraduates, researchers, and practitioners; concepts and WSNs related applications are laid out, research and practical issues are backed by appropriate literature, and new trends are put under focus. For senior undergraduate students, it familiarizes readers with conceptual foundations, applications, and practical project implementations. For graduate students and researchers, transport layer protocols and cross-layering protocols are presented and testbeds and simulators provide a must follow emphasis on the analysis methods and tools for WSNs. For practitioners, besides applications and deployment, the manufacturers and components of WSNs at several platforms and testbeds are fully explored.
Preface Contents About the Author List of Acronyms List of Figures List of Tables Part I: WSNs Concepts and Applications Chapter 1: Introduction 1.1 Sensing, Senses, and Sensors 1.2 Preliminaries of Wireless Sensor Networks 1.3 Mobile Ad Hoc Networks (MANETs) 1.4 Wireless Mesh Networks (WMNs) 1.5 Closer Perspective to WSNs 1.5.1 Wireless Sensor Nodes 1.5.2 Architecture of WSNs 1.6 Types of WSNs 1.6.1 Terrestrial WSNs 1.6.2 Underground WSNs 1.6.3 Underwater Acoustic Sensor Networks (UASNs) 1.6.4 Multimedia WSNs 1.6.5 Mobile WSNs 1.7 Performance Metrics of WSNs 1.8 WSN Standards 1.8.1 IEEE 802.15.4 Low-Rate WPANs 1.8.2 ZigBee 1.8.3 WirelessHART 1.8.4 ISA100.11a 1.8.5 6LoWPAN 1.8.6 IEEE 802.15.3 1.8.7 Wibree, BLE 1.8.8 Z-Wave 1.8.9 Impulse Radio Ultra-Wide Bandwidth Technology, 802.15.4a 1.8.10 INSTEON 1.8.11 Wavenis 1.8.12 ANT 1.8.13 MyriaNed 1.8.14 EnOcean 1.9 Conclusion for a Beginning 1.10 Exercises References Chapter 2: Protocol Stack of WSNs 2.1 Introduction 2.2 Physical Layer 2.3 Data Link Layer 2.4 Network Layer 2.5 Transport Layer 2.6 Application Layer 2.7 Cross-Layer Protocols for WSNs 2.8 Conclusion for Continuation 2.9 Exercises References Chapter 3: WSN Applications 3.1 Applications Categories, Challenges, and Design Objectives 3.1.1 Functional Challenges of Forming WSNs 3.1.2 Design Objectives of WSNs 3.2 Military Applications 3.2.1 Countersniper System for Urban Warfare 3.2.1.1 Architecture Hardware Platform Software Structure 3.2.1.2 Detection 3.2.1.3 Routing Integrated Time Synchronization 3.2.1.4 Sensor Fusion Range Estimation 3.2.1.5 Experimentation 3.2.2 Shooter Localization and Weapon Classification with Soldier-Wearable Networked Sensors 3.2.2.1 Hardware 3.2.2.2 Software Architecture 3.2.2.3 Detection Algorithm 3.2.2.4 Sensor Fusion 3.2.2.5 Results 3.2.3 Shooter Localization Using Soldier-Worn Gunfire Detection Systems 3.2.3.1 Mathematical Formulation 3.2.3.2 Data Fusion at Sensor Node Level 3.2.3.3 Data Fusion at the Central Node 3.2.3.4 Results 3.3 Industrial Applications 3.3.1 On the Application of WSNs in Condition Monitoring and Energy Usage Evaluation for Electric Machines 3.3.1.1 Energy Evaluation and Condition Monitoring Energy Usage Evaluation Condition Monitoring Additional Requirements 3.3.1.2 Energy Evaluation and Condition Monitoring using WSNs System Description Energy Usage Evaluation Motor Condition Monitoring Applicability Analysis 3.3.1.3 Experimentation Results Energy Usage Evaluation: Motor Efficiency Estimation Condition Monitoring – Detection of Air-Gap Eccentricities 3.3.2 Breath: An Adaptive Protocol for Industrial Control Applications Using WSNs 3.3.2.1 System Setup 3.3.2.2 The Breath Protocol 3.3.2.3 The Breath Protocol Stack 3.3.2.4 State Machine Description 3.3.2.5 Results and Experimentation 3.3.3 Requirements, Drivers, and Analysis of WSN Solutions for the Oil and Gas Industry 3.3.3.1 Technical Requirements Long Battery Lifetime Quantifiable Network Performance Friendly Coexistence with WLAN Security Open Standardized Systems 3.3.3.2 Proprietary Solutions Based on IEEE 802.15.4 3.3.3.3 SmartMesh Experimentation and Interpretations Network Performance Coexistence with IEEE 802.11b Power Consumption Security Open Standardized Systems 3.4 Environmental Applications 3.4.1 Assorted Applications 3.4.1.1 Large-Scale Habitat Monitoring 3.4.1.2 Environmental Monitoring 3.4.1.3 Precision Agriculture 3.4.1.4 Macroscope in the Redwoods 3.4.1.5 Active Volcano Monitoring 3.4.1.6 Sensor and Actuator Networks on the Farm 3.4.1.7 Cultural Property Protection 3.4.1.8 Underground Structure Monitoring 3.4.1.9 Foxhouse Project 3.4.1.10 SensorScope for Environmental Monitoring 3.4.1.11 A Biobotic Distributed Sensor Network for Under-Rubble Search and Rescue Mobile Sensor Nodes and Biobotic Agents Biobotic Control Demonstrations Backpack Technologies for Biobots Sensors for Distributed Sensing and Localization Localization Technologies and Algorithms Mapping and Exploration Strategies 3.4.2 A2S: Automated Agriculture System Based on WSN 3.4.2.1 System Architecture 3.4.2.2 Experimentation Results 3.4.3 Living IoT: A Flying Wireless Platform on Live Insects 3.4.3.1 Why Live Insects? 3.4.3.2 Self-Localization of Insects 3.4.3.3 Living IoT Project Design 3.4.3.4 Realized Outcomes 3.4.4 Learning from Researching and Trialing 3.4.4.1 Hardware and Software Development Consider Local Conditions Sensor Packaging Keep It Small and Simple Think Embedded Get All Data You Can Data That Is Useful 3.4.4.2 Testing and Deployment Preparation Check for Interferences Data You Can Trust Be Consistent 3.4.4.3 Deployments Consider Local Conditions: Once Again Get a Watchdog Keep All Data Data You Can Interpret Traceability 3.5 Healthcare Applications 3.5.1 Body Area Network Subsystem 3.5.1.1 Power Consumption 3.5.1.2 Output Transmission Power of the Sensor Nodes 3.5.1.3 Unobtrusiveness 3.5.1.4 Mobility and Portability 3.5.1.5 Real-Time Availability and Reliable Communications 3.5.1.6 Multihop Design 3.5.1.7 Security 3.5.2 Personal Area Network Subsystem 3.5.2.1 Contextual Information Acquisition and Location Tracking 3.5.2.2 Modular and Scalable Design 3.5.2.3 Efficient Locating Algorithms 3.5.2.4 Energy Efficiency of the MAC Layer 3.5.2.5 Self-Organization Between Nodes 3.5.3 Gateway to the Wide Area Networks 3.5.3.1 Local Processing Capability at the BAN and PAN Subsystems 3.5.3.2 Security 3.5.4 WANs for Healthcare Applications 3.5.5 End-User Healthcare Monitoring Application 3.5.5.1 Security 3.5.5.2 Privacy 3.5.5.3 Reliability 3.5.5.4 Middleware Design 3.5.5.5 Context Awareness 3.5.5.6 Seamless Healthcare Tracking and Monitoring System 3.5.6 Categorization and Design Features of WSN Healthcare Applications 3.5.6.1 Applications Prototypes 3.5.6.2 Wearable and Implantable Systems 3.5.6.3 Design Features of WSN Healthcare Applications 3.5.7 Using Heterogeneous WSNs in a Telemonitoring System for Healthcare 3.5.7.1 SYLPH Platform 3.5.7.2 SYLPH Services 3.5.7.3 SYLPH Directory Nodes 3.5.7.4 Telemonitoring System Implementation 3.5.7.5 Experimentation Results 3.6 Daily Life Applications 3.6.1 An Intelligent Car Park Management System Based on WSNs 3.6.1.1 Car Parks Requirements 3.6.1.2 System Overview Hardware Components Structure of the WSN-Based Application System Intelligent Car Park Management System 3.6.1.3 System Implementation Functional Components of the System Event-Driven Processing 3.6.1.4 System Evaluation 3.6.2 Wireless Sensor Networking of Everyday Objects in a Smart Home Environment 3.6.2.1 Requirements for WSNs in Smart Home Environments 3.6.2.2 System Overview Wireless Personal Area Network Personal Server Running an Activity-Centered Computing Middleware Experimental Setup System Evaluation Wireless Communication: Transmission-Reception Range and Signal Strength Measures Sensing Precision and Recall Values 3.6.3 What Else? 3.7 Multimedia Applications 3.7.1 Network Architecture 3.7.2 Design Issues of WMSNs 3.7.3 WMSN Applications 3.7.4 Hardware Platforms of WMSNs 3.7.4.1 Classification of Wireless Motes 3.7.4.2 Camera Motes Features 3.7.4.3 Available Camera Mote Platforms Cyclops Panoptes Address-Event Imagers eCAM WiSN FireFly Mosaic MeshEye MicrelEye WiCa CITRIC ACME Fox Board Camera Platform Vision Mesh 3.7.4.4 Distributed Smart Cameras Occlusion Pixels on Target Field of View Tracking 3.8 Robotic WSNs (RWSNs) 3.8.1 Mobility in WSNs 3.8.2 Robotics and WSNs 3.8.2.1 What Is a RWSN? 3.8.2.2 What Kind of Research Works Are RWSN Related? 3.8.2.3 What Are the System Components and Algorithms Required for RWSNs? 3.9 Conclusion for Further 3.10 Exercises References Chapter 4: Transport Protocols for WSNs 4.1 Presumptions and Considerations of Transport Protocols in WSNS 4.2 Obsessions of Transport Protocols for WSNs 4.2.1 Transport Protocol Performance Metrics 4.2.1.1 Energy Efficiency 4.2.1.2 Reliability 4.2.1.3 QoS Metrics 4.2.1.4 Fairness 4.2.2 Congestion Control 4.2.3 Loss Recovery 4.2.3.1 Loss Detection and Notification 4.2.3.2 Retransmission-Based Loss Recovery 4.3 Transport Protocols for WSNs 4.3.1 Congestion Detection and Avoidance (CODA) 4.3.2 Event-to-Sink Reliable Transport (ESRT) 4.3.3 Reliable Multi-Segment Transport (RMST) 4.3.4 Pump Slowly Fetch Quickly (PSFQ) 4.3.5 GARUDA 4.3.6 Tiny TCP/IP 4.3.7 Sensor TCP (STCP) 4.3.8 SenTCP 4.3.9 Trickle 4.3.10 Fusion 4.3.11 Asymmetric and Reliable Transport (ART) 4.3.11.1 Reliable Query Transfer 4.3.11.2 Reliable Event Transfer 4.3.11.3 Distributed Congestion Control 4.3.12 Congestion Control and Fairness for Many-to-One Routing in Sensor Networks (CCF) 4.3.13 Priority-Based Congestion Control Protocol (PCCP) 4.3.14 Siphon 4.3.15 Reliable Bursty Convergecast (RBC) 4.3.16 More TCP Protocols for WSNs 4.4 Conclusion for Enrichment 4.5 Exercises References Chapter 5: Cross-Layer Protocols for WSNs 5.1 Why Cross-Layering in WSNs 5.2 Cross-Layer Design Approaches 5.2.1 Layers Interactions 5.2.1.1 Cross-Layering MAC and Network Layers Cross-Layer Network Formation for Energy-Efficient IEEE 802.15.4/ZigBee WSNs (PANEL) A Cross-Layer Routing Protocol for Balancing Energy Consumption in WSNs (CLB) 5.2.1.2 Cross-Layering Physical and MAC and Network Layers Cross-Layer Optimized Routing in WSNs with Duty-Cycle and Energy Harvesting (TPGFPlus) 5.2.2 Single-Layer Integrated Module 5.2.2.1 A Cross-Layer Protocol for Efficient Communication in WSNs (XLP) 5.3 Cross-Layer Design for WSNs Security 5.3.1 Challenges of Layered Security Approaches 5.3.2 Limitations of Layered Security Approaches 5.3.3 Guidelines for Securing WSNs 5.3.4 Trends in Cross-Layer Design for Security 5.3.5 Proposals for Cross-Layer Design for Security 5.4 Conclusion for Reality 5.5 Exercises References Part II: WSNs Experimentation and Analysis Chapter 6: Testbeds for WSNs 6.1 WSN Testbeds Principles 6.1.1 Requirements from Testbeds Deployment 6.1.1.1 Additional Requirements 6.1.1.2 User Requirements from a Testbed 6.1.1.3 Operator Requirements from a Testbed 6.1.2 Full-Scale and Miniaturized Testbeds 6.1.3 Virtualizing and Federating Testbeds 6.1.3.1 Virtual Links and Federated Testbeds 6.1.3.2 Topology Virtualization 6.2 Testbeds Illustrated 6.2.1 ORBIT 6.2.1.1 Hardware ORBIT Grid Outdoor Testbed Sandboxes Chassis Manager 6.2.1.2 Software Experiment Control Measurement and Result Collection 6.2.2 MoteLab 6.2.2.1 Technical Details MoteLab Hardware MySQL Database Back-End Web Interface DBLogger Job Daemon User Quotas, Direct Node Access, and Power Measurement 6.2.2.2 Use Models Batch Use Real-Time Access 6.2.2.3 MoteLab Applications 6.2.3 Meerkats 6.2.3.1 Hardware 6.2.3.2 Software Resource Manager Visual Processing Communication 6.2.3.3 Energy Consumption Characterization Benchmark 6.2.3.4 Image Acquisition Analysis 6.2.4 MiNT 6.2.4.1 MiNT Architecture Core Nodes Controller Node 6.2.4.2 Experimentation on MiNT Experiment Control Experiment Analysis Fidelity of MiNT MiNT Limitations 6.2.4.3 Hybrid Simulation Implementation Issues Hybrid Simulation vs. Pure Simulation Signal Propagation Error Characteristics 6.2.5 MiNT-m 6.2.5.1 MiNT-m Architecture Hardware Components Software Components 6.2.5.2 Using MiNT-m Experiment Configuration Experiment Execution Experiment Analysis 6.2.5.3 Autonomous Node Mobility Position and Orientation Tracking Node Trajectory Determination 24×7 Autonomous Operations and Auto-recharging 6.2.5.4 Hybrid Simulation Pause/Breakpointing Rollback Execution Performance 6.2.6 Kansei 6.2.6.1 Kansei Composition Hardware Infrastructure The Stationary Array Portable Array Mobile Array Director: A Uniform Remotely Accessible Framework for Multi-tier WSN Applications Director Architecture 6.2.6.2 High Fidelity Sensor Data Generation Tools Sample-Based Modeling Tools Synthetic Data Generation Using Parametric Models Probabilistic Modeling Tools 6.2.6.3 Hybrid Simulation 6.2.7 Trio 6.2.7.1 Trio Architecture Tier-1: The Trio Node Sustainable Operation Efficient Physical Interaction Fail-Safe Flexibility Tier-2: A Network of Gateways Tier-3: The Root Server Network Health Monitoring Power Monitoring Monitoring Network Programming Monitoring and Control of Applications Tier-4: Client Applications 6.2.7.2 Experimenting with Trio Familiarities with Renewable Energy Limited Availability Emergency Battery Daemon Epidemic Protocol Failures Variability at Scale 6.2.8 TWIST 6.2.8.1 TWIST Architecture Sensor Nodes Testbed Sockets and USB Cabling USB Hubs Super Nodes Server Control Station 6.2.8.2 TWIST Installation Matching SUE and TWIST Architectures Programming and Time Synchronization Power Supply Control Management 6.2.8.3 TWIST Deployment 6.2.9 SignetLab 6.2.9.1 Hardware Deployment Space Sensor Nodes Backplane Connection 6.2.9.2 Software Tool 6.2.9.3 Analysis of SignetLab 6.2.10 WISEBED 6.2.10.1 Architecture 6.2.10.2 WISEBED Compatible Testbeds 6.2.11 Indriya 6.2.11.1 Indriya Composition Motes Sensors USB Active Cables Design of a Back-Channel for Remote Programming User Interface 6.2.11.2 Indriya Compared 6.2.12 GENI 6.2.12.1 Federated WSN Fabrics Clearinghouse Tasks Federation Services Authorization Services Accountability Services Resource Representation Resource Discovery Resource Allocation Site Requirements Sliceability Virtualization Programmability Researcher Requirements Resource Utilization Resource Translation 6.2.12.2 Why to Use GENI? 6.2.12.3 Key GENI Concepts Project Slice Aggregates The GENI AM API and GENI RSpecs Getting Access to GENI and GENI Resources Tying up All Together: The GENI Experimenter Workflow Experiment Setup Experiment Execution Finishing up 6.2.13 Further Testbeds 6.2.13.1 Emulab 6.2.13.2 PlanetLab 6.2.13.3 Mobile Emulab 6.2.13.4 SenseNet 6.2.13.5 Ubiquitous Robotics 6.3 Conclusion for Extension 6.4 Exercises References Chapter 7: Simulators and Emulators for WSNs 7.1 WSN Testbeds, Simulators, and Emulators 7.2 Modeling and Simulation 7.2.1 Basic Definitions 7.2.2 Validation and Verification 7.3 Simulation Principles and Practice 7.3.1 Simulating the Advance of Time 7.3.1.1 The Time-Slicing Approach 7.3.1.2 The Discrete-Event Simulation Approach 7.3.1.3 The Three-Phase Simulation Approach 7.3.1.4 The Continuous Simulation Approach 7.3.2 Proof of Concept 7.3.3 Common Simulation Shortcomings 7.3.3.1 Simulation Setup Simulation Type Model Validation and Verification PRNG Validation and Verification Variable Definition Scenario Development 7.3.3.2 Simulation Execution Setting the PRNG Seed Scenario Initialization Metric Collection 7.3.3.3 Output Analysis Single Set of Data Statistical Analysis Confidence Intervals 7.3.3.4 Publishing 7.3.4 Unreliable Simulation Revealed 7.3.5 The Price of Simulation 7.4 Simulators and Emulators 7.4.1 The Network Simulator (ns-2) 7.4.2 The Network Simulator (ns-3) 7.4.3 GloMoSim 7.4.3.1 Parsec 7.4.3.2 Visualization Tool 7.4.3.3 GloMoSim Library 7.4.3.4 Aggregation Node Aggregation Layer Aggregation 7.4.4 OPNET 7.4.4.1 Hierarchical Modeling Network Model Node Model Process Model 7.4.4.2 Data Generation Probe Editor Analysis Tool Filter Tool 7.4.5 OMNeT++ 7.4.5.1 The Design of OMNeT++ Model Structure The NED Language Graphical Editor Separation of Model and Experiments Simple Module Programming Model Design of the Simulation Library Parallel Simulation Support Real-Time Simulation and Network Emulation Animation, Tracing, and Visualizing Dynamic Behavior 7.4.6 TOSSIM 7.4.7 ATEMU 7.4.8 Avrora 7.4.9 EmStar 7.4.9.1 Experimentation Pure Simulation Testbeds Emulation EmTOS 7.4.10 SensorSim 7.4.11 NRL SensorSim 7.4.12 J-Sim 7.4.12.1 ACA Overview Component Component Hierarchy Port Contract 7.4.12.2 J-Sim Framework Communication Model Power Model 7.4.12.3 Network Emulation 7.4.12.4 J-Sim Performance Compared Target Tracking Using GPSR Routing Protocol 7.4.13 Prowler/JProwler 7.4.13.1 Prowler Framework Radio Propagation Models Signal Reception and Collisions MAC Layer Model The Application Layer 7.4.13.2 Optimization Framework 7.4.13.3 Prowler Performance 7.4.13.4 JProwler 7.4.14 SENS 7.4.14.1 Simulator Structure Application Components Network Components Physical Components Environment Component 7.4.14.2 Simulation Examples Spanning Tree Simplified Localization 7.4.14.3 SENS Performance 7.4.15 Sense 7.4.15.1 Component-Based Design 7.4.15.2 Sensor Network Simulation Components 7.4.15.3 Components Repository 7.4.15.4 Performance Comparison 7.4.16 Shawn 7.4.16.1 Architecture Models Sequencer Simulation Environment 7.4.16.2 Shawn Compared 7.4.17 SenSim 7.4.17.1 SenSim Design Coordinator Module Hardware Model Wireless Channel Model Sensor Node Stack 7.4.18 PAWiS 7.4.18.1 Structure and Functions Modularization CPU Timing Environment and Air Power Simulation Dynamic Behavior 7.4.18.2 Optimization 7.4.19 MSPsim 7.4.20 Castalia 7.4.21 MiXiM 7.4.21.1 MiXiM Base Models Environmental Model Connection Modeling Nodes Connectivity Wireless Channel Models Physical Layer Models 7.4.22 NesCT 7.4.23 Sunshine 7.4.23.1 SUNSHINE Components 7.4.23.2 SUNSHINE Functioning 7.4.23.3 Cross-Domain Interface 7.4.23.4 SUNSHINE Compared 7.4.24 NetTopo 7.5 Conclusion for Takeoff 7.6 Exercises References Part III: WSNs Manufacturers and Datasheets Chapter 8: WSNs Manufacturers 8.1 Adaptive Wireless Solutions (Adaptive Wireless Solutions 2015) 8.2 AlertMe (AlertMe 2014) and British Gas (British Gas 2015) 8.3 ANT Wireless Division of Dynastream (Dynastream Innovations 2014) 8.4 Atmel (Atmel 2015) 8.5 Cisco (Cisco 2015) 8.6 Coalesenses (Coalesenses 2014) 8.7 Crossbow Technologies (Aol 2015) 8.8 Dust Networks (Dust Networks 2015) 8.9 EasySen (EasySen 2015) 8.10 EcoLogicSense (EcoLogicSense 2015) 8.11 EpiSensor (EpiSensor 2015) 8.12 ERS (ERS 2015) 8.13 GainSpan (GainSpan 2015) 8.14 Infineon (Infineon 2015) 8.15 Libelium (Libelium 2015) 8.16 MEMSIC (MEMSIC 2015) 8.17 Millennial Net (Millennial Net 2012) 8.18 Moog Crossbow (Moog Crossbow 2014) 8.19 Moteiv (Sensors Online 2007) 8.20 National Instruments (National Instruments 2015) 8.21 OmniVision Technologies (OmniVision Technologies 2011) 8.22 Sensirion (Sensirion 2015) 8.23 Shimmer (Shimmer 2015) 8.24 Silicon Labs (Sillicon Labs 2015) 8.25 SOWNet Technologies (SOWNet Technologies 2014) 8.26 SPI (SPI 2015) 8.27 Terabee (Terabee 2015) 8.28 Texas Instruments (TI 2015) 8.29 Valarm (Valarm 2015) 8.30 WhizNets (WhizNets 2015) 8.31 Willow Technologies (Willow Technologies 2012) 8.32 Xandem (Xandem 2015) References Chapter 9: Datasheets 9.1 Agilent ADCM-1670 CIF Resolution CMOS Camera Module (Agilent Technologies 2003a) 9.2 Agilent ADCM-1700-0000 CMOS Camera Module (Agilent Technologies 2003b) 9.3 Agilent ADCM-2650 CMOS Camera Module (Agilent Technologies 2003c) 9.4 Agilent ADNS-3060 Optical Mouse Sensor (Agilent Technologies 2004) 9.5 AL440B High Speed FIFO Field Memory (AverLogic Technologies 2002) 9.6 Atmel AT29BV040A Flash Memory (Atmel 2003) 9.7 Atmel AT91 ARM Thumb-Based Microcontrollers (Atmel 2008) 9.8 Atmel AT91SAM ARM-Based Embedded MPU (Atmel 2011c) 9.9 Atmel Microcontroller with 4/8/16 K Bytes In-System Programmable Flash (Atmel 2011b) 9.10 Atmel Microcontroller with 128 K Bytes In-System Programmable Flash (Atmel 2011a) 9.11 Atmel FPSLIC (Atmel 2002) 9.12 Bluegiga WT12 (Bluegiga Technologies 2007) 9.13 C8051F121 Mixed-Signal MCU (Silicon Laboratories 2004) 9.14 CC1000 (Texas Instruments 2007a) 9.15 CC1020 (Texas Instruments 2014a) 9.16 CC1100 (Texas Instruments 2005a) 9.17 CC1101 (Texas Instruments 2014b) 9.18 CC2420 (Texas Instruments 2005b) 9.19 CC2430 (Texas Instruments 2006) 9.20 CC2431 (Texas Instruments 2005c) 9.21 CC2530 (Texas Instruments 2011a) 9.22 CP2102/9 Single-Chip USB to UART Bridge (Silicon Laboratories 2013) 9.23 Digital Compass Solutions HMR3300 (Honeywell 2012) 9.24 DS18B20 Programmable Resolution 1-Wire Digital Thermometer (Maxim Integrated 2008) 9.25 DS18S20 High-Precision 1-Wire Digital Thermometer (Maxim Integrated 2010) 9.26 G-Node G301 (SOWNet Technologies 2014) 9.27 GS-1 Low Frequency Seismometer (Geospace Technologies 2014b) 9.27.1 GS-1 Low Frequency Seismometer 9.28 GS-11D Geophone (Geospace Technologies 2014a) 9.29 Imote2 (Crossbow 2005) 9.30 Intel PXA270 Processor (Intel 2005a) 9.31 Intel StrataFlash Embedded Memory (Intel 2005b) 9.32 Intel StrongARM* SA-1110 (Intel 2000) 9.33 iSense Security Sensor Module (Coalesenses 2014) 9.34 MICA2 Mote (Crossbow 2002a) 9.35 MICA2DOT (Crossbow 2002b) 9.36 MICAz Mote (Crossbow 2006a) 9.37 ML675K Series (Oki Semiconductor 2004) 9.38 MOTE-VIEW 1.2 (Crossbow 2006b) 9.39 MSB-A2 Platform (Baar et al. 2008) 9.40 MSP430F1611 Microcontroller (Texas Instruments 2011b) 9.41 MSP430F2416 Microcontroller (Texas Instruments 2007b) 9.42 MSX-01F Solar Panel (BP Solar 2014) 9.42.1 BP SOLAR – MSX-01F – SOLAR PANEL, 1.2 W 9.43 MTS/MDA (Crossbow 2007a) 9.44 Omron Subminiature Basis Switch (Omron 2014) 9.45 OV528 Serial Bus Camera System (OmniVision Technologies 2002) 9.46 OV6620/OV6120 Single-Chip CMOS Digital Camera (OmniVision Technologies 1999) 9.47 OV7640/OV7140 CMOS VGA CAMERACHIPS (OmniVision Technologies 2003) 9.48 OV9655/OV9155 (OmniVision Technologies 2006) 9.49 PCF50606/605 Single-Chip Power Management Unit+ (Philips 2002) 9.50 PIC18 Microcontroller Family (Microchip 2000) 9.51 Qimonda HYB18L512160BF-7.5 (Qimonda AG 2006) 9.52 SBT30EDU Sensor and Prototyping Board (EasySen LLC 2008a) 9.53 SBT80 Multi-Modality Sensor Board for TelosB Wireless Motes (EasySen LLC 2008a) 9.54 Spartan-3 FPGA (XILINX 2013) 9.55 Stargate (Crossbow 2004) 9.56 Stargate NetBridge (Crossbow 2007b) 9.57 T-Node (SOWNet 2014) 9.58 TC55VCM208ASTN40,55 CMOS Static RAM (Toshiba 2002) 9.59 Telos (Moteiv 2004) 9.60 TinyNode (Dubois-Ferrière et al. 2006, Fig. 9.2) 9.61 Tmote Connect (Moteiv 2006a) 9.62 Tmote Sky (Moteiv 2006b) 9.63 TSL250R, TSL251R, TSL252R Light to Voltage Optical Sensors (TAOS 2001) 9.64 WiEye Sensor Board for Wireless Surveillance and Security Applications (EasySen LLC 2008b) 9.65 WM8950 (Wolfson Microelectronics 2011) 9.66 Xbee/Xbee-PRO OEM RF Modules (MaxStream 2007) 9.67 XC2C256 CoolRunner-II CPLD (XILINX 2007) 9.68 XE1205I Integrated UHF Transceiver (Semtech 2008) References Part IV: Ignition Chapter 10: Takeoff Index