دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Sergey Bobkov, Gennadiy Chistyakov, Friedrich Götze سری: Probability Theory and Stochastic Modelling, 104 ISBN (شابک) : 3031311485, 9783031311482 ناشر: Springer سال نشر: 2023 تعداد صفحات: 437 [438] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Concentration and Gaussian Approximation for Randomized Sums به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب غلظت و تقریب گاوسی برای مجموع تصادفی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب توسعههای نتیجه کلاسیک سوداکوف در مورد تمرکز پدیده اندازهگیری را برای مجموع وزنی متغیرهای تصادفی وابسته توصیف میکند. موضوعات اصلی کتاب، مجموع وزنی متغیرهای تصادفی و تمرکز توزیع آنها حول قوانین گاوسی است. تجزیه و تحلیل در چارچوب گسترده تر تمرکز اندازه گیری برای توابع در کره های با ابعاد بالا انجام می شود. با شروع از تمرکز معمول توابع Lipschitz حول میانگین محدود کننده آنها، نویسندگان به استخراج تمرکز حول توابع افین یا چند جمله ای محدود می پردازند، با هدف به سمت نظریه غلظت مرتبه بالاتر بر اساس نابرابری های تابعی از نوع log-Sobolev و Poincaré. این نتایج به دست آوردن غلظت مرتبه بالاتر برای مجموع وزنی طبقات متغیرهای وابسته را ممکن می سازد. در حالی که بخش اول کتاب مفاهیم اساسی و نتایج حاصل از احتمالات و تجزیه و تحلیل را که برای بقیه کتاب مورد نیاز است مورد بحث قرار می دهد، بخش های اخیر توضیح کاملی از تمرکز، تجزیه و تحلیل بر روی کره، تقریب عادی مرتبه بالاتر و کلاس های وزن دار ارائه می دهد. مجموع متغیرهای تصادفی وابسته با و بدون تقارن.
This book describes extensions of Sudakov\'s classical result on the concentration of measure phenomenon for weighted sums of dependent random variables. The central topics of the book are weighted sums of random variables and the concentration of their distributions around Gaussian laws. The analysis takes place within the broader context of concentration of measure for functions on high-dimensional spheres. Starting from the usual concentration of Lipschitz functions around their limiting mean, the authors proceed to derive concentration around limiting affine or polynomial functions, aiming towards a theory of higher order concentration based on functional inequalities of log-Sobolev and Poincaré type. These results make it possible to derive concentration of higher order for weighted sums of classes of dependent variables. While the first part of the book discusses the basic notions and results from probability and analysis which are needed for the remainder of the book, the latter parts provide a thorough exposition of concentration, analysis on the sphere, higher order normal approximation and classes of weighted sums of dependent random variables with and without symmetries.
Preface Contents Part I Generalities Chapter 1 Moments and Correlation Conditions 1.1 Isotropy 1.2 First Order Correlation Condition 1.3 Moments and Khinchine-type Inequalities 1.4 Moment Functionals Using Independent Copies 1.5 Variance of the Euclidean Norm 1.6 Small Ball Probabilities 1.7 Second Order Correlation Condition Chapter 2 Some Classes of Probability Distributions 2.1 Independence 2.2 Pairwise Independence 2.3 Coordinatewise Symmetric Distributions 2.4 Logarithmically Concave Measures 2.5 Khinchine-type Inequalities for Norms and Polynomials 2.6 One-dimensional Log-concave Distributions 2.7 Remarks Chapter 3 Characteristic Functions 3.1 Smoothing 3.2 Berry–Esseen-type Inequalities 3.3 Lévy Distance and Zolotarev’s Inequality 3.4 Lower Bounds for the Kolmogorov Distance 3.5 Remarks Chapter 4 Sums of Independent Random Variables 4.1 Cumulants 4.2 Lyapunov Coefficients 4.3 Rosenthal-type Inequalities 4.4 Normal Approximation 4.5 Expansions for the Product of Characteristic Functions 4.6 Higher Order Approximations of Characteristic Functions 4.7 Edgeworth Corrections 4.8 Rates of Approximation 4.9 Remarks Part II Selected Topics on Concentration Chapter 5 Standard Analytic Conditions 5.1 Moduli of Gradients in the Continuous Setting 5.2 Perimeter and Co-area Inequality 5.3 Poincaré-type Inequalities 5.4 The Euclidean Setting 5.5 Isoperimetry and Cheeger-type Inequalities 5.6 Rothaus Functionals 5.7 Standard Examples and Conditions 5.8 Canonical Gaussian Measures 5.9 Remarks Chapter 6 Poincaré-type Inequalities 6.1 Exponential Integrability 6.2 Growth of ????????-norms 6.3 Moment Functionals. Small Ball Probabilities 6.4 Weighted Poincaré-type Inequalities 6.5 The Brascamp–Lieb Inequality 6.6 Coordinatewise Symmetric Log-concave Distributions 6.7 Remarks Chapter 7 Logarithmic Sobolev Inequalities 7.1 The Entropy Functional and Relative Entropy 7.2 Definitions and Examples 7.3 Exponential Bounds 7.4 Bounds Involving Relative Entropy 7.5 Orlicz Norms and Growth of ????????-norms 7.6 Bounds Involving Second Order Derivatives 7.7 Remarks Chapter 8 Supremum and Infimum Convolutions 8.1 Regularity and Analytic Properties 8.2 Generators 8.3 Hamilton–Jacobi Equations 8.4 Supremum/Infimum Convolution Inequalities 8.5 Transport-Entropy Inequalities 8.6 Remarks Part III Analysis on the Sphere Chapter 9 Sobolev-type Inequalities 9.1 Spherical Derivatives 9.2 Second Order Modulus of Gradient 9.3 Spherical Laplacian 9.4 Poincaré and Logarithmic Sobolev Inequalities 9.5 Isoperimetric and Cheeger-type Inequalities 9.6 Remarks Chapter 10 Second Order Spherical Concentration 10.1 Second Order Poincaré-type Inequalities 10.2 Bounds on the ????2-norm in the Euclidean Setup 10.3 First Order Concentration Inequalities 10.4 Second Order Concentration 10.5 Second Order Concentration With Linear Parts 10.6 Deviations for Some Elementary Polynomials 10.7 Polynomials of Fourth Degree 10.8 Large Deviations for Weighted ℓ????-norms 10.9 Remarks Chapter 11 Linear Functionals on the Sphere 11.1 First Order Normal Approximation 11.2 Second Order Approximation 11.3 Characteristic Function of the First Coordinate 11.4 Upper Bounds on the Characteristic Function 11.5 Polynomial Decay at Infinity 11.6 Remarks Part IV First Applications to Randomized Sums Chapter 12 Typical Distributions 12.1 Concentration Problems for Weighted Sums 12.2 The Structure of Typical Distributions 12.3 Normal Approximation for Gaussian Mixtures 12.4 Approximation in Total Variation 12.5 ????????-distances to the Normal Law 12.6 Lower Bounds 12.7 Remarks Chapter 13 Characteristic Functions of Weighted Sums 13.1 Upper Bounds on Characteristic Functions 13.2 Concentration Functions of Weighted Sums 13.3 Deviations of Characteristic Functions 13.4 Deviations in the Symmetric Case 13.5 Deviations in the Non-symmetric Case 13.6 The Linear Part of Characteristic Functions 13.7 Remarks Chapter 14 Fluctuations of Distributions 14.1 The Kantorovich Transport Distance 14.2 Large Deviations for the Kantorovich Distance 14.3 Pointwise Fluctuations 14.4 The Lévy Distance 14.5 Berry–Esseen-type Bounds 14.6 Preliminary Bounds on the Kolmogorov Distance 14.7 BoundsWith a Standard Rate 14.8 Deviation Bounds for the Kolmogorov Distance 14.9 The Log-concave Case 14.10 Remarks Part V Refined Bounds and Rates Chapter 15 ????2 Expansions and Estimates 15.1 General Approximations 15.2 Bounds for ????2-distance With a Standard Rate 15.3 ExpansionWith Error of Order ????−1 15.4 Two-sided Bounds 15.5 Asymptotic Formulas in the General Case 15.6 General Lower Bounds Chapter 16 Refinements for the Kolmogorov Distance 16.1 Preliminaries 16.2 Large Interval. Final Upper Bound 16.3 Relations Between Kantorovich, ????2 and Kolmogorov distances 16.4 Lower Bounds 16.5 Remarks Chapter 17 Applications of the Second Order Correlation Condition 17.1 Mean Value of ????(???????? ,????) Under the Symmetry Assumption 17.2 Berry–Esseen Bounds Involving ???? 17.3 Deviations Under Moment Conditions 17.4 The Case of Non-symmetric Distributions 17.5 The Mean Value of ????(???????? ,????) in the Presence of Poincaré Inequalities 17.6 Deviations of of ????(???????? ,????) in the Presence of Poincaré Inequalities 17.7 Relation to the Thin Shell Problem 17.8 Remarks Part VI Distributions and Coefficients of Special Type Chapter 18 Special Systems and Examples 18.1 Systems with Lipschitz Condition 18.2 Trigonometric Systems 18.3 Chebyshev Polynomials 18.4 Functions of the Form ???????? (????, ????) = ???? (???????? + ????) 18.5 The Walsh System on the Discrete Cube 18.6 Empirical Measures 18.7 Lacunary Systems 18.8 Remarks Chapter 19 DistributionsWith Symmetries 19.1 Coordinatewise Symmetric Distributions 19.2 Behavior On Average 19.3 Coordinatewise Symmetry and Log-concavity 19.4 Remarks Chapter 20 Product Measures 20.1 Edgeworth Expansion for Weighted Sums 20.2 Approximation of Characteristic Functions of Weighted Sums 20.3 Integral Bounds on Characteristic Functions 20.4 Approximation in the Kolmogorov Distance 20.5 Normal Approximation Under the 4-th Moment Condition 20.6 Approximation With Rate ????−3/2 20.7 Lower Bounds 20.8 Remarks Chapter 21 Product Measures 21.1 Bernoulli Coefficients 21.2 Random Sums 21.3 Existence of Infinite Subsequences of Indexes 21.4 Selection of Indexes from Integer Intervals References Glossary Index